
Voice Mode
Natural voice conversations for AI assistants that brings human-like voice interactions to Claude, ChatGPT, and other LLMs through the Model Context Protocol (MCP).
README
Voice Mode
Install via:
uvx voice-mode
|pip install voice-mode
| getvoicemode.com
Natural voice conversations for AI assistants. Voice Mode brings human-like voice interactions to Claude, ChatGPT, and other LLMs through the Model Context Protocol (MCP).
🖥️ Compatibility
Runs on: Linux • macOS • Windows (WSL) | Python: 3.10+ | Tested: Ubuntu 24.04 LTS, Fedora 42
✨ Features
- 🎙️ Voice conversations with Claude - ask questions and hear responses
- 🔄 Multiple transports - local microphone or LiveKit room-based communication
- 🗣️ OpenAI-compatible - works with any STT/TTS service (local or cloud)
- ⚡ Real-time - low-latency voice interactions with automatic transport selection
- 🔧 MCP Integration - seamless with Claude Desktop and other MCP clients
🎯 Simple Requirements
All you need to get started:
- 🔑 OpenAI API Key (or compatible service) - for speech-to-text and text-to-speech
- 🎤 Computer with microphone and speakers OR ☁️ LiveKit server (LiveKit Cloud or self-hosted)
Quick Start
claude mcp add --scope user voice-mode uvx voice-mode
export OPENAI_API_KEY=your-openai-key
claude
> /converse
🎬 Demo
Watch Voice Mode in action:
Example Usage
Once configured, try these prompts with Claude:
"Let's have a voice conversation"
"Ask me about my day using voice"
"Tell me a joke"
(Claude will speak and wait for your response)"Say goodbye"
(Claude will speak without waiting)
The new converse
function makes voice interactions more natural - it automatically waits for your response by default.
Installation
Prerequisites
- Python >= 3.10
- OpenAI API Key (or compatible service)
Quick Install
# Using Claude Code (recommended)
claude mcp add --scope user voice-mode uvx voice-mode
# Using UV
uvx voice-mode
# Using pip
pip install voice-mode
Manual Configuration for Different Clients
<details> <summary><strong>Claude Code (CLI)</strong></summary>
claude mcp add voice-mode -- uvx voice-mode
Or with environment variables:
claude mcp add voice-mode --env OPENAI_API_KEY=your-openai-key -- uvx voice-mode
</details>
<details> <summary><strong>Claude Desktop</strong></summary>
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
{
"mcpServers": {
"voice-mode": {
"command": "uvx",
"args": ["voice-mode"],
"env": {
"OPENAI_API_KEY": "your-openai-key"
}
}
}
}
</details>
<details> <summary><strong>Cursor</strong></summary>
Add to ~/.cursor/mcp.json
:
{
"mcpServers": {
"voice-mode": {
"command": "uvx",
"args": ["voice-mode"],
"env": {
"OPENAI_API_KEY": "your-openai-key"
}
}
}
}
</details>
<details> <summary><strong>VS Code</strong></summary>
Add to your VS Code MCP config:
{
"mcpServers": {
"voice-mode": {
"command": "uvx",
"args": ["voice-mode"],
"env": {
"OPENAI_API_KEY": "your-openai-key"
}
}
}
}
</details>
<details> <summary><strong>Windsurf</strong></summary>
{
"mcpServers": {
"voice-mode": {
"command": "uvx",
"args": ["voice-mode"],
"env": {
"OPENAI_API_KEY": "your-openai-key"
}
}
}
}
</details>
<details> <summary><strong>Zed</strong></summary>
Add to your Zed settings.json:
{
"context_servers": {
"voice-mode": {
"command": {
"path": "uvx",
"args": ["voice-mode"],
"env": {
"OPENAI_API_KEY": "your-openai-key"
}
}
}
}
}
</details>
Alternative Installation Options
<details> <summary><strong>Using Docker</strong></summary>
docker run -it --rm \
-e OPENAI_API_KEY=your-openai-key \
--device /dev/snd \
-v /tmp/.X11-unix:/tmp/.X11-unix \
-e DISPLAY=$DISPLAY \
ghcr.io/mbailey/voicemode:latest
</details>
<details> <summary><strong>Using pipx</strong></summary>
pipx install voice-mode
</details>
<details> <summary><strong>From source</strong></summary>
git clone https://github.com/mbailey/voicemode.git
cd voicemode
pip install -e .
</details>
Tools
Tool | Description | Key Parameters |
---|---|---|
converse |
Have a voice conversation - speak and optionally listen | message , wait_for_response (default: true), listen_duration (default: 10s), transport (auto/local/livekit) |
listen_for_speech |
Listen for speech and convert to text | duration (default: 5s) |
check_room_status |
Check LiveKit room status and participants | None |
check_audio_devices |
List available audio input/output devices | None |
start_kokoro |
Start the Kokoro TTS service | models_dir (optional, defaults to ~/Models/kokoro) |
stop_kokoro |
Stop the Kokoro TTS service | None |
kokoro_status |
Check the status of Kokoro TTS service | None |
Note: The converse
tool is the primary interface for voice interactions, combining speaking and listening in a natural flow.
Configuration
📖 See docs/configuration.md for complete setup instructions for all MCP hosts
📁 Ready-to-use config files in config-examples/
Quick Setup
The only required configuration is your OpenAI API key:
export OPENAI_API_KEY="your-key"
Optional Settings
# Custom STT/TTS services (OpenAI-compatible)
export STT_BASE_URL="http://localhost:2022/v1" # Local Whisper
export TTS_BASE_URL="http://localhost:8880/v1" # Local TTS
export TTS_VOICE="alloy" # Voice selection
# LiveKit (for room-based communication)
# See docs/livekit/ for setup guide
export LIVEKIT_URL="wss://your-app.livekit.cloud"
export LIVEKIT_API_KEY="your-api-key"
export LIVEKIT_API_SECRET="your-api-secret"
# Debug mode
export VOICE_MCP_DEBUG="true"
# Save all audio (TTS output and STT input)
export VOICE_MCP_SAVE_AUDIO="true"
Local STT/TTS Services
For privacy-focused or offline usage, Voice Mode supports local speech services:
- Whisper.cpp - Local speech-to-text with OpenAI-compatible API
- Kokoro - Local text-to-speech with multiple voice options
These services provide the same API interface as OpenAI, allowing seamless switching between cloud and local processing.
OpenAI API Compatibility Benefits
By strictly adhering to OpenAI's API standard, Voice Mode enables powerful deployment flexibility:
- 🔀 Transparent Routing: Users can implement their own API proxies or gateways outside of Voice Mode to route requests to different providers based on custom logic (cost, latency, availability, etc.)
- 🎯 Model Selection: Deploy routing layers that select optimal models per request without modifying Voice Mode configuration
- 💰 Cost Optimization: Build intelligent routers that balance between expensive cloud APIs and free local models
- 🔧 No Lock-in: Switch providers by simply changing the
BASE_URL
- no code changes required
Example: Simply set OPENAI_BASE_URL
to point to your custom router:
export OPENAI_BASE_URL="https://router.example.com/v1"
export OPENAI_API_KEY="your-key"
# Voice Mode now uses your router for all OpenAI API calls
The OpenAI SDK handles this automatically - no Voice Mode configuration needed!
Architecture
┌─────────────────────┐ ┌──────────────────┐ ┌─────────────────────┐
│ Claude/LLM │ │ LiveKit Server │ │ Voice Frontend │
│ (MCP Client) │◄────►│ (Optional) │◄───►│ (Optional) │
└─────────────────────┘ └──────────────────┘ └─────────────────────┘
│ │
│ │
▼ ▼
┌─────────────────────┐ ┌──────────────────┐
│ Voice MCP Server │ │ Audio Services │
│ • converse │ │ • OpenAI APIs │
│ • listen_for_speech│◄───►│ • Local Whisper │
│ • check_room_status│ │ • Local TTS │
│ • check_audio_devices └──────────────────┘
└─────────────────────┘
Troubleshooting
Common Issues
- No microphone access: Check system permissions for terminal/application
- UV not found: Install with
curl -LsSf https://astral.sh/uv/install.sh | sh
- OpenAI API error: Verify your
OPENAI_API_KEY
is set correctly - No audio output: Check system audio settings and available devices
Debug Mode
Enable detailed logging and audio file saving:
export VOICE_MCP_DEBUG=true
Debug audio files are saved to: ~/voice-mcp_recordings/
Audio Saving
To save all audio files (both TTS output and STT input):
export VOICE_MCP_SAVE_AUDIO=true
Audio files are saved to: ~/voice-mcp_audio/
with timestamps in the filename.
Links
- Website: getvoicemode.com
- GitHub: github.com/mbailey/voicemode
- PyPI: pypi.org/project/voice-mcp
- npm: npmjs.com/package/voicemode
Community
- Discord: Join our community
- Twitter/X: @getvoicemode
- YouTube: @getvoicemode
License
MIT - A Failmode Project
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。