VSGuard MCP
Provides real-time OWASP ASVS security guidance and vulnerability scanning for AI coding agents. Enables proactive security during code generation by checking security requirements, scanning code for vulnerabilities, and suggesting secure code fixes.
README
VSGuard MCP - Vulnerability Scanner & Guard
A production-ready Model Context Protocol (MCP) server that provides real-time OWASP ASVS security guidance and vulnerability scanning for AI coding agents.
VSGuard = Vulnerability Scanner + Guard - Powered by FastMCP 2.0
🎯 Overview
This MCP server integrates with Claude Desktop, Cursor, and other MCP-compatible tools to enable proactive security during code generation. It helps AI agents write secure code from the start by providing:
- 📋 OWASP ASVS Requirements - Real-time security guidance based on ASVS v4.0
- 🔍 Vulnerability Scanning - Static analysis using Semgrep with custom ASVS rules
- 🛠️ Secure Code Fixes - Actionable remediation with code examples
- 🤖 LLM-Optimized Output - Formatted for maximum comprehension by AI agents
✨ Features
Three Core Tools
check_security_requirements- Get relevant ASVS requirements before writing codescan_code- Analyze code for vulnerabilities with ASVS mappingssuggest_fix- Generate secure code alternatives with explanations
Security Coverage
- ✅ Authentication (ASVS Chapter 2)
- ✅ Session Management (ASVS Chapter 3)
- ✅ Access Control (ASVS Chapter 4)
- ✅ Input Validation & Injection Prevention (ASVS Chapter 5)
- ✅ Cryptography (ASVS Chapters 6-9)
- ✅ Data Protection
Supported Languages
- Python (primary)
- JavaScript/TypeScript
- Java, Go, Ruby, PHP, C/C++, C#, Rust (via Semgrep)
🚀 Quick Start
Prerequisites
- Python 3.11+
- pip or Poetry
- Semgrep (for scanning)
Installation
# Clone repository
git clone https://github.com/yourname/vsguard-mcp
cd vsguard-mcp
# Install dependencies
pip install -e .
# Or with Poetry
poetry install
# Install Semgrep
pip install semgrep
Running the Server
# Run directly with FastMCP
python src/server.py
# Or use FastMCP CLI
fastmcp run src/server.py
# Or with Poetry
poetry run python src/server.py
Configure Claude Desktop
Add to ~/Library/Application Support/Claude/claude_desktop_config.json:
{
"mcpServers": {
"vsguard": {
"command": "python",
"args": ["/absolute/path/to/vsguard-mcp/src/server.py"]
}
}
}
Or with Poetry:
{
"mcpServers": {
"vsguard": {
"command": "poetry",
"args": ["run", "python", "/absolute/path/to/vsguard-mcp/src/server.py"]
}
}
}
Or use FastMCP CLI (simplest):
{
"mcpServers": {
"vsguard": {
"command": "fastmcp",
"args": ["run", "/absolute/path/to/vsguard-mcp/src/server.py"]
}
}
}
Restart Claude Desktop to load the server.
📖 Usage Examples
Example 1: Get Security Requirements
In Claude Desktop:
I need to create a user login endpoint. What security requirements should I follow?
Claude will call:
check_security_requirements(
code_type="authentication",
language="python"
)
Response:
# OWASP ASVS Security Requirements
## Level 1 Requirements (8)
### 2.1.1: Password Security
**Requirement:** Verify that user set passwords are at least 12 characters in length.
**Implementation Guide:**
- Add validation during user registration and password change
- Reject passwords shorter than 12 characters
- Consider allowing longer passwords (64+ chars)
**Code Example:**
```python
def validate_password_length(password: str) -> bool:
if len(password) < 12:
raise ValueError("Password must be at least 12 characters")
return True
[... more requirements ...]
### Example 2: Scan Code for Vulnerabilities
**In Claude Desktop:**
Can you check this code for security issues?
def login(username, password): query = f"SELECT * FROM users WHERE username = '{username}'" cursor.execute(query)
**Claude will call:**
```python
scan_code(
code="""def login(username, password):
query = f"SELECT * FROM users WHERE username = '{username}'"
cursor.execute(query)""",
language="python"
)
Response:
❌ **SCAN FAILED**
**Total Findings:** 1
- 🟠 **HIGH:** 1
**ASVS Requirements Violated:** 5.3.4, 5.3.5
## Detailed Findings
### 1. 🟠 SQL Injection
**Severity:** HIGH
**ASVS Requirements:** 5.3.4, 5.3.5
**Issue:**
SQL injection vulnerability detected. User input is concatenated directly into SQL query.
**Location:** input.py:line 2
**Vulnerable Code:**
```python
query = f"SELECT * FROM users WHERE username = '{username}'"
Remediation: Use parameterized queries with placeholders instead of string concatenation.
Example:
cursor.execute("SELECT * FROM users WHERE username = ?", (username,))
### Example 3: Get Secure Code Fix
**In Claude Desktop:**
How do I fix this SQL injection vulnerability?
**Claude will call:**
```python
suggest_fix(
vulnerable_code="cursor.execute(f'SELECT * FROM users WHERE id = {user_id}')",
vulnerability_type="sql_injection",
language="python"
)
Response:
# Security Fix Suggestion
**ASVS Requirements Addressed:** 5.3.4, 5.3.5
## ❌ Vulnerable Code
```python
cursor.execute(f"SELECT * FROM users WHERE id = {user_id}")
✅ Secure Code
cursor.execute("SELECT * FROM users WHERE id = ?", (user_id,))
# Or with SQLAlchemy ORM:
from sqlalchemy import select
stmt = select(User).where(User.username == username)
user = session.execute(stmt).scalar_one_or_none()
📝 Explanation
Use parameterized queries (prepared statements) instead of string concatenation.
🛡️ Security Benefits
- Prevents SQL injection attacks
- Separates code from data
## 🏗️ Project Structure
vsguard-mcp/ ├── src/ │ ├── server.py # MCP server entry point │ ├── config.py # Configuration │ ├── models.py # Pydantic data models │ │ │ ├── asvs/ │ │ ├── loader.py # Load ASVS from YAML │ │ ├── mapper.py # Map findings to ASVS │ │ └── requirements.py # Requirement models │ │ │ ├── scanners/ │ │ ├── base.py # Abstract scanner │ │ └── semgrep_scanner.py # Semgrep integration │ │ │ ├── fixes/ │ │ ├── generator.py # Fix generator │ │ └── templates.py # Fix templates │ │ │ └── utils/ │ └── formatters.py # LLM-optimized formatting │ ├── data/ │ ├── asvs/ # ASVS requirements (YAML) │ │ ├── authentication.yaml │ │ ├── session_management.yaml │ │ ├── validation.yaml │ │ └── cryptography.yaml │ │ │ └── rules/ # Custom Semgrep rules │ ├── authentication.yaml │ ├── injection.yaml │ ├── cryptography.yaml │ └── session.yaml │ └── tests/ # Test suite
## ⚙️ Configuration
Create a `.env` file (optional):
```env
# ASVS settings
MIN_ASVS_LEVEL=1
# Scanner settings
ENABLE_SEMGREP=true
SCAN_TIMEOUT=30
MAX_CODE_SIZE=50000
# Logging
LOG_LEVEL=INFO
🧪 Testing
# Run tests
pytest tests/
# Run specific test
pytest tests/test_asvs_loader.py
# With coverage
pytest --cov=src tests/
📊 Coverage
Current implementation includes:
- 40+ ASVS Requirements across authentication, session management, input validation, and cryptography
- 25+ Custom Semgrep Rules detecting common vulnerabilities
- 10+ Fix Templates with secure code examples
- Multiple Languages supported (Python, JavaScript, TypeScript, etc.)
Vulnerability Detection
- SQL Injection (ASVS 5.3.4, 5.3.5)
- Cross-Site Scripting (ASVS 5.3.3, 5.3.10)
- Weak Password Validation (ASVS 2.1.1, 2.1.7)
- Weak Cryptography (ASVS 6.2.2, 6.2.5)
- Hardcoded Secrets (ASVS 2.3.1, 14.3.3)
- Session Management Issues (ASVS 3.x)
- XML External Entity (XXE) (ASVS 5.5.2)
- Command Injection (ASVS 5.3.4)
- And more...
🎓 How It Works
1. ASVS Requirements Database
The server loads OWASP ASVS v4.0 requirements from structured YAML files:
requirements:
- id: "2.1.1"
level: 1
category: "Password Security"
requirement: "Verify that user set passwords are at least 12 characters in length."
cwe: "CWE-521"
description: "Passwords should be sufficiently long..."
implementation_guide: "Add validation during registration..."
code_examples:
- |
if len(password) < 12:
raise ValueError("Too short")
2. Static Analysis with Semgrep
Custom Semgrep rules detect ASVS violations:
rules:
- id: asvs-5-3-4-sql-injection
pattern: cursor.execute(f"... {$VAR} ...")
message: "ASVS 5.3.4: SQL injection vulnerability"
severity: ERROR
metadata:
asvs_id: "5.3.4"
cwe: "CWE-89"
3. Intelligent Mapping
Findings are automatically mapped to ASVS requirements by:
- Vulnerability type (sql_injection → ASVS 5.3.4)
- CWE ID (CWE-89 → ASVS 5.3.4, 5.3.5)
- Code patterns (login endpoints → authentication requirements)
4. LLM-Optimized Output
All responses are formatted for maximum LLM comprehension:
- Clear structure with headers and sections
- Code examples with syntax highlighting
- Severity indicators (🔴 🟠 🟡)
- Actionable remediation steps
- ASVS requirement references
🔧 Extending the Server
Add New ASVS Requirements
Create/edit YAML files in data/asvs/:
requirements:
- id: "X.Y.Z"
level: 1
category: "Your Category"
requirement: "Requirement text"
cwe: "CWE-XXX"
description: "Detailed explanation"
implementation_guide: "How to implement"
code_examples:
- "Example code"
Add Custom Semgrep Rules
Create YAML files in data/rules/:
rules:
- id: custom-rule-id
patterns:
- pattern: vulnerable_pattern()
message: "Vulnerability description"
severity: ERROR
metadata:
asvs_id: "X.Y.Z"
cwe: "CWE-XXX"
remediation: "How to fix"
Add Fix Templates
Edit src/fixes/templates.py:
FIX_TEMPLATES = {
"vulnerability_type": {
"python": {
"vulnerable": "# Bad code",
"secure": "# Good code",
"explanation": "Why it's better",
"asvs_requirements": ["X.Y.Z"],
}
}
}
🤝 Contributing
Contributions welcome! Areas for improvement:
- More ASVS Requirements - Cover additional chapters
- More Languages - Expand language support
- More Scanners - Integrate Bandit, detect-secrets
- Better AI Integration - Improve LLM output formatting
- Performance - Optimize scanning speed
⚡ Powered By
- FastMCP 2.0 - Modern Python framework for MCP servers
- Semgrep - Static analysis engine
- OWASP ASVS - Security verification standard
📝 License
MIT License - see LICENSE file for details.
🔗 Resources
🙏 Acknowledgments
- OWASP for the ASVS standard
- Anthropic for the MCP protocol
- Semgrep for the scanning engine
📧 Support
For issues, questions, or contributions, please open an issue on GitHub.
Built with ❤️ for secure AI-assisted development
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。