WakaTime MCP Server
Provides access to WakaTime coding analytics data through MCP tools. Enables querying coding stats, activity summaries, project lists, and time tracking information from your WakaTime account.
README
WakaTime MCP Server
A Model Context Protocol (MCP) server that provides high-signal coding analytics from your WakaTime data.
- Direct mode: FastMCP serves Streamable HTTP at
http://localhost:8000/mcp - Proxy mode:
mcp-proxyexposes the server over SSE/HTTP and Caddy adds token auth (recommended for self-hosting)
Tooling / API
| Tool | Purpose | Key arguments |
|---|---|---|
get_coding_stats |
Detailed stats for a period | range (last_7_days, last_30_days, last_6_months, last_year, all_time) |
get_summary |
Activity breakdown for a date/range | start_date, end_date, project |
get_all_time |
Total coding time since account creation | project (optional) |
get_status_bar |
Current day status (like editor status bar) | (none) |
list_projects |
List/search tracked projects | query (optional) |
Configuration
Configure via environment variables (or a .env file for the self-hosted scripts).
| Variable | Description | Required |
|---|---|---|
WAKATIME_API_KEY |
Your API key from https://wakatime.com/settings/api-key | Yes |
MCP_AUTH_KEY |
Token for auth proxy (proxy/self-hosted mode) | Proxy mode |
PORT |
Direct-mode port (default: 8000) |
No |
Development (Direct mode)
-
Install (uv required)
git clone https://github.com/dpshade/wakatime-mcp.git cd wakatime-mcp uv sync --no-install-project -
Run
WAKATIME_API_KEY="your_wakatime_api_key_here" uv run -- python src/server.py -
Connect
- URL:
http://localhost:8000/mcp - Auth: none
- URL:
Deployment
Option 1: Self-hosted with auth (recommended)
This mode runs the MCP server with FastMCP’s default stdio transport and uses mcp-proxy to expose it over HTTP:
Internet -> (optional Tailscale Funnel) -> Caddy (auth) -> mcp-proxy -> FastMCP (stdio)
:8770 :8767
-
Configure
cp .env.example .env # Edit .env: set WAKATIME_API_KEY and a strong MCP_AUTH_KEY -
Download Caddy (auth proxy)
curl -L https://github.com/caddyserver/caddy/releases/latest/download/caddy_linux_amd64 -o deploy/caddy chmod +x deploy/caddy -
Start
./deploy/start.sh -
Endpoints
- Auth proxy (recommended):
- SSE:
http://localhost:8770/sse - Streamable HTTP:
http://localhost:8770/mcp
- SSE:
- Internal (no auth; do not expose publicly):
- SSE:
http://localhost:8767/sse - Streamable HTTP:
http://localhost:8767/mcp
- SSE:
- Auth proxy (recommended):
mcp-proxy also exposes a health endpoint at http://localhost:8767/status (and via auth proxy at http://localhost:8770/status).
Systemd (persistent)
./deploy/install-systemd.sh
sudo systemctl enable --now mcp-wakatime mcp-wakatime-auth
Optional: Tailscale Funnel
If you use Tailscale, you can publish the auth proxy port:
tailscale funnel --bg --set-path=/wakatime localhost:8770
tailscale funnel --bg 443 on
Option 2: Docker
Runs mcp-proxy + the server in a container.
cd deploy
docker-compose up -d
- Endpoint (no auth):
http://localhost:8767/sse - If you want auth, run Caddy on the host (or add it to your own compose stack) and proxy to
8767.
Option 3: Render
This repo includes render.yaml for deploying the direct Python server.
- Set environment variable:
WAKATIME_API_KEY - Your service endpoint will be:
https://<your-service>/mcp
Client setup
MCP Inspector
npx @modelcontextprotocol/inspector
Then connect using:
- Direct mode:
http://localhost:8000/mcp(Streamable HTTP) - Proxy mode:
http://localhost:8770/sse(SSE)
Poke / other hosted clients (proxy mode)
Use the auth proxy SSE endpoint and send MCP_AUTH_KEY via one of:
Authorization: Bearer <MCP_AUTH_KEY>X-API-Key: <MCP_AUTH_KEY>Api-Key: <MCP_AUTH_KEY>
Security notes
- Generate a strong auth key:
openssl rand -hex 32 - Never expose the unauthenticated
mcp-proxyport (8767) to the public internet.
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。