WaterCrawl MCP

WaterCrawl MCP

Provides AI systems with web crawling, scraping, and search capabilities through WaterCrawl's API, enabling content extraction, site mapping, and web search with customizable options.

Category
访问服务器

README

WaterCrawl MCP

A Model Context Protocol (MCP) server for WaterCrawl, built with FastMCP. This package provides AI systems with web crawling, scraping, and search capabilities through a standardized interface.

Quick Start with npx (No Installation)

Use WaterCrawl MCP directly without installation using npx:

npx @watercrawl/mcp --api-key YOUR_API_KEY

Using with AI Assistants

Codeium/Windsurf

Configure your Codeium or Windsurf with this package without installing it:

{
  "mcpServers": {
    "watercrawl": {
      "command": "npx",
      "args": [
        "@watercrawl/mcp",
        "--api-key",
        "YOUR_API_KEY",
        "--base-url",
        "https://app.watercrawl.dev"
      ]
    }
  }
}

Claude Desktop

Run WaterCrawl MCP in SSE mode:

npx @watercrawl/mcp sse --port 3000 --endpoint /sse --api-key YOUR_API_KEY

Then configure Claude Desktop to connect to your SSE server.

Command-line Options

  • -b, --base-url <url>: WaterCrawl API base URL (default: https://app.watercrawl.dev)
  • -k, --api-key <key>: Required, your WaterCrawl API key
  • -h, --help: Display help information
  • -V, --version: Display version information

SSE mode additional options:

  • -p, --port <number>: Port for the SSE server (default: 3000)
  • -e, --endpoint <path>: SSE endpoint path (default: /sse)

Development and Contribution

Project Structure

wc-mcp/
├── src/                   # Source code
│   ├── cli/               # Command-line interface
│   ├── config/            # Configuration management
│   ├── mcp/               # MCP implementation
│   ├── services/          # WaterCrawl API services
│   └── tools/             # MCP tools implementation
├── tests/                 # Test suite
├── dist/                  # Compiled JavaScript
├── tsconfig.json          # TypeScript configuration
├── package.json           # npm package configuration
└── README.md              # This file

Setup for Development

  1. Clone the repository and install dependencies:
git clone https://github.com/watercrawl/watercrawl-mcp
cd watercrawl-mcp
npm install
  1. Build the project:
npm run build
  1. Link the package for local development:
npm link @watercrawl/mcp

Contribution Guidelines

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/your-feature)
  3. Commit your changes (git commit -m 'Add your feature')
  4. Push to the branch (git push origin feature/your-feature)
  5. Open a Pull Request

Installation (Alternative to npx)

Global Installation

npm install -g @watercrawl/mcp

Local Installation

npm install @watercrawl/mcp

Configuration

Configure WaterCrawl MCP using environment variables or command-line parameters.

Environment Variables

Create a .env file or set environment variables:

WATERCRAWL_BASE_URL=https://app.watercrawl.dev
WATERCRAWL_API_KEY=YOUR_API_KEY
SSE_PORT=3000                  # Optional, for SSE mode
SSE_ENDPOINT=/sse              # Optional, for SSE mode

Available Tools

The WaterCrawl MCP server provides the following tools:

1. scrape-url

Scrape content from a URL with customizable options.

{
  "url": "https://example.com",
  "pageOptions": {
    "exclude_tags": ["script", "style"],
    "include_tags": ["p", "h1", "h2"],
    "wait_time": 1000,
    "only_main_content": true,
    "include_html": false,
    "include_links": true,
    "timeout": 15000,
    "accept_cookies_selector": ".cookies-accept-button",
    "locale": "en-US",
    "extra_headers": {
      "User-Agent": "Custom User Agent"
    },
    "actions": [
      {"type": "screenshot"},
      {"type": "pdf"}
    ]
  },
  "sync": true,
  "download": true
}

2. search

Search the web using WaterCrawl.

{
  "query": "artificial intelligence latest developments",
  "searchOptions": {
    "language": "en",
    "country": "us",
    "time_range": "recent",
    "search_type": "web",
    "depth": "deep"
  },
  "resultLimit": 5,
  "sync": true,
  "download": true
}

3. download-sitemap

Download a sitemap from a crawl request in different formats.

{
  "crawlRequestId": "uuid-of-crawl-request",
  "format": "json" // or "graph" or "markdown"
}

4. manage-crawl

Manage crawl requests: list, get details, stop, or download results.

{
  "action": "list", // or "get", "stop", "download"
  "crawlRequestId": "uuid-of-crawl-request", // for get, stop, and download actions
  "page": 1,
  "pageSize": 10
}

5. manage-search

Manage search requests: list, get details, or stop running searches.

{
  "action": "list", // or "get", "stop"
  "searchRequestId": "uuid-of-search-request", // for get and stop actions
  "page": 1,
  "pageSize": 10,
  "download": true
}

6. monitor-request

Monitor a crawl or search request in real-time, with timeout control.

{
  "type": "crawl", // or "search"
  "requestId": "uuid-of-request",
  "timeout": 30, // in seconds
  "download": true
}

License

ISC

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选