WaterCrawl MCP
Provides AI systems with web crawling, scraping, and search capabilities through WaterCrawl's API, enabling content extraction, site mapping, and web search with customizable options.
README
WaterCrawl MCP
A Model Context Protocol (MCP) server for WaterCrawl, built with FastMCP. This package provides AI systems with web crawling, scraping, and search capabilities through a standardized interface.
Quick Start with npx (No Installation)
Use WaterCrawl MCP directly without installation using npx:
npx @watercrawl/mcp --api-key YOUR_API_KEY
Using with AI Assistants
Codeium/Windsurf
Configure your Codeium or Windsurf with this package without installing it:
{
"mcpServers": {
"watercrawl": {
"command": "npx",
"args": [
"@watercrawl/mcp",
"--api-key",
"YOUR_API_KEY",
"--base-url",
"https://app.watercrawl.dev"
]
}
}
}
Claude Desktop
Run WaterCrawl MCP in SSE mode:
npx @watercrawl/mcp sse --port 3000 --endpoint /sse --api-key YOUR_API_KEY
Then configure Claude Desktop to connect to your SSE server.
Command-line Options
-b, --base-url <url>: WaterCrawl API base URL (default: https://app.watercrawl.dev)-k, --api-key <key>: Required, your WaterCrawl API key-h, --help: Display help information-V, --version: Display version information
SSE mode additional options:
-p, --port <number>: Port for the SSE server (default: 3000)-e, --endpoint <path>: SSE endpoint path (default: /sse)
Development and Contribution
Project Structure
wc-mcp/
├── src/ # Source code
│ ├── cli/ # Command-line interface
│ ├── config/ # Configuration management
│ ├── mcp/ # MCP implementation
│ ├── services/ # WaterCrawl API services
│ └── tools/ # MCP tools implementation
├── tests/ # Test suite
├── dist/ # Compiled JavaScript
├── tsconfig.json # TypeScript configuration
├── package.json # npm package configuration
└── README.md # This file
Setup for Development
- Clone the repository and install dependencies:
git clone https://github.com/watercrawl/watercrawl-mcp
cd watercrawl-mcp
npm install
- Build the project:
npm run build
- Link the package for local development:
npm link @watercrawl/mcp
Contribution Guidelines
- Fork the repository
- Create a feature branch (
git checkout -b feature/your-feature) - Commit your changes (
git commit -m 'Add your feature') - Push to the branch (
git push origin feature/your-feature) - Open a Pull Request
Installation (Alternative to npx)
Global Installation
npm install -g @watercrawl/mcp
Local Installation
npm install @watercrawl/mcp
Configuration
Configure WaterCrawl MCP using environment variables or command-line parameters.
Environment Variables
Create a .env file or set environment variables:
WATERCRAWL_BASE_URL=https://app.watercrawl.dev
WATERCRAWL_API_KEY=YOUR_API_KEY
SSE_PORT=3000 # Optional, for SSE mode
SSE_ENDPOINT=/sse # Optional, for SSE mode
Available Tools
The WaterCrawl MCP server provides the following tools:
1. scrape-url
Scrape content from a URL with customizable options.
{
"url": "https://example.com",
"pageOptions": {
"exclude_tags": ["script", "style"],
"include_tags": ["p", "h1", "h2"],
"wait_time": 1000,
"only_main_content": true,
"include_html": false,
"include_links": true,
"timeout": 15000,
"accept_cookies_selector": ".cookies-accept-button",
"locale": "en-US",
"extra_headers": {
"User-Agent": "Custom User Agent"
},
"actions": [
{"type": "screenshot"},
{"type": "pdf"}
]
},
"sync": true,
"download": true
}
2. search
Search the web using WaterCrawl.
{
"query": "artificial intelligence latest developments",
"searchOptions": {
"language": "en",
"country": "us",
"time_range": "recent",
"search_type": "web",
"depth": "deep"
},
"resultLimit": 5,
"sync": true,
"download": true
}
3. download-sitemap
Download a sitemap from a crawl request in different formats.
{
"crawlRequestId": "uuid-of-crawl-request",
"format": "json" // or "graph" or "markdown"
}
4. manage-crawl
Manage crawl requests: list, get details, stop, or download results.
{
"action": "list", // or "get", "stop", "download"
"crawlRequestId": "uuid-of-crawl-request", // for get, stop, and download actions
"page": 1,
"pageSize": 10
}
5. manage-search
Manage search requests: list, get details, or stop running searches.
{
"action": "list", // or "get", "stop"
"searchRequestId": "uuid-of-search-request", // for get and stop actions
"page": 1,
"pageSize": 10,
"download": true
}
6. monitor-request
Monitor a crawl or search request in real-time, with timeout control.
{
"type": "crawl", // or "search"
"requestId": "uuid-of-request",
"timeout": 30, // in seconds
"download": true
}
License
ISC
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。