Weather Chat Assistant

Weather Chat Assistant

A modern chat interface that provides real-time weather information and forecasts for any location worldwide using the Model Context Protocol (MCP).

Category
访问服务器

README

Weather Chat Assistant 🌤️

A modern weather chat interface built with Streamlit and powered by the Model Context Protocol (MCP). Get real-time weather information and forecasts for any location worldwide through a friendly chat interface.

Features

  • 🌍 Global Weather Data: Get weather for any city worldwide
  • ☀️ Current Weather: Real-time temperature, conditions, humidity, and wind data
  • 📅 Weather Forecasts: Up to 3-day weather predictions
  • 💬 Chat Interface: Natural language queries like "What's the weather in London?"
  • 🎨 Modern UI: Beautiful, responsive Streamlit interface
  • 🔧 MCP Integration: Built using Model Context Protocol architecture

Quick Start

Option 1: Direct Streamlit Deployment

  1. Clone or download this repository

  2. Install dependencies:

    pip install -r requirements.txt
    
  3. Run the Streamlit app:

    streamlit run streamlit_app.py
    
  4. Open your browser to the URL shown (usually http://localhost:8501)

Option 2: Deploy to Streamlit Cloud

  1. Fork this repository to your GitHub account

  2. Go to Streamlit Cloud

  3. Deploy by connecting your GitHub repository

  4. Set the main file as streamlit_app.py

The app will automatically deploy and be available at your Streamlit Cloud URL!

MCP Server (Advanced Usage)

For developers interested in the MCP server component:

Setup MCP Server

  1. Navigate to the MCP server directory:

    cd weather-mcp-server
    
  2. Install MCP dependencies:

    pip install -r requirements.txt
    
  3. Run the MCP server:

    python weather_mcp_server.py
    
  4. Test the server (in another terminal):

    python -c "
    import asyncio
    from mcp_client import WeatherMCPClient
    
    async def test():
        client = WeatherMCPClient()
        if await client.connect():
            result = await client.get_weather('London')
            print(result)
            await client.disconnect()
    
    asyncio.run(test())
    "
    

Usage Examples

Once the app is running, try these example queries:

  • Current Weather:

    • "What's the weather in London?"
    • "Temperature in Tokyo"
    • "Weather for New York"
  • Weather Forecasts:

    • "Show me the forecast for Paris"
    • "3-day forecast for Sydney"
    • "Weather forecast for Berlin for 2 days"

API & Data Source

  • Weather Data: Powered by wttr.in - a free weather service
  • No API Key Required: Uses a public weather service
  • Global Coverage: Weather data for cities worldwide
  • Real-time Updates: Current conditions and forecasts

Architecture

graph TD
    A[User Input] --> B[Streamlit App]
    B --> C[Message Parser]
    C --> D[Weather API Client]
    D --> E[wttr.in API]
    E --> F[Weather Data]
    F --> G[Formatted Response]
    G --> H[Chat Interface]
    
    I[MCP Server] --> J[Weather Tools]
    J --> K[get_weather]
    J --> L[get_forecast]

Components

  1. Streamlit App (streamlit_app.py): Main chat interface
  2. MCP Server (weather-mcp-server/weather_mcp_server.py): Weather tools server
  3. MCP Client (weather-mcp-server/mcp_client.py): Client for MCP communication
  4. Weather API: Direct integration with wttr.in weather service

File Structure

weather-chat-assistant/
├── streamlit_app.py           # Main Streamlit application
├── requirements.txt           # Streamlit dependencies
├── README.md                 # This file
└── weather-mcp-server/       # MCP server components
    ├── weather_mcp_server.py # MCP server with weather tools
    ├── mcp_client.py         # MCP client for communication
    └── requirements.txt      # MCP server dependencies

Deployment Options

1. Streamlit Cloud (Recommended)

  • ✅ Free hosting
  • ✅ Automatic deployment from GitHub
  • ✅ Custom domain support
  • ✅ Easy updates via Git push

2. Local Development

  • ✅ Full control
  • ✅ Instant feedback
  • ✅ Easy debugging

3. Other Platforms

  • Heroku: Add Procfile with web: streamlit run streamlit_app.py --server.port=$PORT
  • Railway: Direct deployment from GitHub
  • Render: Automatic builds from repository

Troubleshooting

Common Issues

  1. "Module not found" errors:

    pip install -r requirements.txt
    
  2. Network timeouts:

    • Check internet connection
    • Try different location names
    • Wait a moment and retry
  3. Streamlit port conflicts:

    streamlit run streamlit_app.py --server.port 8502
    

Debug Mode

To enable detailed logging, set the environment variable:

export PYTHONPATH=.
python -c "import logging; logging.basicConfig(level=logging.DEBUG)"
streamlit run streamlit_app.py

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Test thoroughly
  5. Submit a pull request

License

This project is open source and available under the MIT License.

Support

  • 📧 Issues: Open a GitHub issue for bugs or feature requests
  • 💬 Discussions: Use GitHub Discussions for questions
  • 📖 Documentation: Check this README and code comments

Built with ❤️ using Streamlit and MCP

Get weather information the modern way - just ask! 🌤️

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选