Weather Info MCP Server
Provides weather information through MCP tools integrated with a FastAPI backend, enabling users to query current weather for single or multiple cities and check API health status.
README
Weather Info App with MCP Server
A simple weather information application built with FastAPI and integrated with an MCP (Model Context Protocol) server for use with Gemini CLI.
📋 Requirements Checklist
- ✅ FastAPI weather application
- ✅ MCP Server implementation
- ✅ Gemini CLI integration
- ✅ MCP tools demonstration
- ✅ Screen recording (see
SCREEN_RECORDING_GUIDE.md)
🎥 Screen Recording
IMPORTANT: This repository includes a screen recording demonstrating:
- MCP server running
gemini mcp listcommand showing available tools- Usage of all MCP tools (
get_weather,get_weather_batch,check_api_health)
See SCREEN_RECORDING_GUIDE.md for detailed recording instructions.
Project Structure
.
├── weather_api.py # FastAPI weather application
├── mcp_server.py # MCP server exposing weather tools
├── requirements.txt # Python dependencies
├── mcp_config.json # Gemini CLI MCP configuration
├── demo.py # Demo script for testing
└── README.md # This file
Features
- FastAPI Weather API: RESTful API providing weather information
- MCP Server: Exposes weather functionality as MCP tools
- Gemini CLI Integration: Ready to use with Google's Gemini CLI
- Multiple Tools: Get weather for single/multiple cities, health check
Installation
- Clone this repository:
git clone <your-repo-url>
cd "MCp derver using FAST MCP"
- Install dependencies:
pip install -r requirements.txt
Running the Application
Step 1: Start the FastAPI Weather Server
In one terminal:
python weather_api.py
The API will be available at http://localhost:8000
You can test it:
# Using curl
curl http://localhost:8000/weather?city=London
# Or using the browser
http://localhost:8000/weather?city=Paris
Step 2: Configure Gemini CLI for MCP
The MCP server uses stdio transport. Create or update your Gemini CLI configuration file:
On Windows:
%APPDATA%\Google\Gemini CLI\mcp_config.json
On macOS/Linux:
~/.config/google-gemini-cli/mcp_config.json
Example configuration:
{
"mcpServers": {
"weather-info": {
"command": "python",
"args": ["<absolute-path-to-mcp_server.py>"],
"env": {}
}
}
}
For Windows, use full path like:
{
"mcpServers": {
"weather-info": {
"command": "python",
"args": ["B:\\MCp derver using FAST MCP\\mcp_server.py"],
"env": {}
}
}
}
Step 3: Use with Gemini CLI
- Start Gemini CLI
- List available MCP tools:
gemini mcp list
- Use the tools:
# Get weather for a city
gemini mcp call weather-info get_weather --city "Tokyo"
# Get weather for multiple cities
gemini mcp call weather-info get_weather_batch --cities "London,Paris,New York"
# Check API health
gemini mcp call weather-info check_api_health
Available MCP Tools
1. get_weather
Get current weather information for a single city.
Parameters:
city(required): Name of the citycountry(optional): Country name
Example:
gemini mcp call weather-info get_weather --city "London" --country "UK"
2. get_weather_batch
Get weather information for multiple cities at once.
Parameters:
cities(required): Comma-separated list of cities
Example:
gemini mcp call weather-info get_weather_batch --cities "Tokyo,Seoul,Beijing"
3. check_api_health
Check if the weather API is running and healthy.
Example:
gemini mcp call weather-info check_api_health
Testing
Run the demo script to test the setup:
python demo.py
API Endpoints
The FastAPI server provides:
GET /- API informationGET /health- Health checkGET /weather?city=<name>&country=<name>- Get weather (GET)POST /weather- Get weather (POST with JSON body)
Screen Recording Instructions
To create a screen recording demonstrating the MCP server:
- Start the FastAPI server:
python weather_api.py - Open Gemini CLI
- Show
gemini mcp listcommand to see available tools - Demonstrate each tool:
get_weatherfor a single cityget_weather_batchfor multiple citiescheck_api_health
- Show the responses and how they work together
Project Files
weather_api.py- FastAPI weather applicationmcp_server.py- MCP server exposing weather toolsdemo.py- Testing and demonstration scriptget_path.py- Helper to get correct paths for configurationtest_mcp_structure.py- Verify MCP imports and structurerequirements.txt- Python dependenciesmcp_config.json- Example Gemini CLI configuration
Documentation
README.md- This file (main documentation)QUICK_START.md- Quick setup guidesetup_instructions.md- Detailed setup instructionsSCREEN_RECORDING_GUIDE.md- Guide for creating demo videoPROJECT_SUMMARY.md- Complete project overview
Notes
- The weather data is mock/simulated for demonstration purposes
- Make sure the FastAPI server is running before using MCP tools
- The MCP server communicates with the FastAPI server via HTTP
- All paths in the configuration must be absolute paths
Troubleshooting
MCP server not connecting:
- Ensure FastAPI server is running on port 8000
- Check that the path to
mcp_server.pyin the config is correct and absolute - Verify Python is in your PATH
Tools not appearing:
- Restart Gemini CLI after updating the configuration
- Check the MCP server logs for errors
- Verify the configuration JSON syntax is correct
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。