Weather MCP Server

Weather MCP Server

Enables users to get current weather conditions and forecasts for any city through OpenWeatherMap API integration. Designed as a sample MCP server for the Puch AI Hackathon with basic weather querying capabilities.

Category
访问服务器

README

Weather MCP Server

This is a sample MCP (Messaging and Compute Platform) server for a weather application, designed for the Puch AI Hackathon. It provides a basic structure for integrating with a weather API and includes the required validate and resume endpoints.

Prerequisites

Before you begin, ensure you have the following installed:

Getting Started

Follow these steps to get the project up and running on your local machine.

1. Clone the repository

git clone <repository_url>
cd weather_mcp

2. Set up environment variables

The application requires a WEATHER_API_KEY to be set as an environment variable.

On macOS/Linux:

export WEATHER_API_KEY='your_weather_api_key'
export MY_NUMBER='919876543210'

On Windows:

$env:WEATHER_API_KEY='your_weather_api_key'
$env:MY_NUMBER='919876543210'

Alternatively, you can create a .env file in the root of the project and add the following lines. The .gitignore file is already configured to ignore this file.

WEATHER_API_KEY='your_weather_api_key'
MY_NUMBER='919876543210'

Note: The current app.py does not automatically load .env files. You would need to add a library like python-dotenv for that. Also, make sure to replace 919876543210 with your actual phone number in the required format.

3. Install dependencies

It's recommended to use a virtual environment.

python3 -m venv venv
source venv/bin/activate  # On Windows, use `venv\Scripts\activate`
pip install -r requirements.txt

4. Run the application

flask run

The server will start on http://127.0.0.1:5000.

Deployment to Render

This project is ready to be deployed to Render using Docker.

  1. Push your code to a GitHub repository.
  2. Create a new "Web Service" on Render and connect it to your GitHub repository.
  3. Choose the "Docker" environment. Render will automatically detect the Dockerfile.
  4. Add your WEATHER_API_KEY as an environment variable in the Render dashboard.
  5. Deploy! Render will build and deploy your application. You will get a public URL for your service.

API Endpoints

All endpoints are prefixed with /mcp.

/mcp

  • Method: GET
  • Description: A simple endpoint to check if the server is running.
  • Response:
    {
      "message": "Welcome to the Weather MCP server!"
    }
    

/mcp/get_current_weather

  • Method: POST
  • Description: Gets the current weather for a city.
  • Request Body:
    {
      "city": "London"
    }
    
  • Response: The JSON response from the OpenWeatherMap API.

/mcp/get_weather_forecast

  • Method: POST
  • Description: Gets the weather forecast for a city.
  • Request Body:
    {
      "city": "Paris",
      "days": 3
    }
    
  • Response: The JSON response from the OpenWeatherMap API.

/mcp/validate

  • Method: POST
  • Description: A placeholder for the hackathon's validate endpoint.
  • Request Body:
    {
      "phone_number": "1234567890",
      "resume_summary": "A brief summary of a resume."
    }
    

/mcp/resume

  • Method: POST
  • Description: A placeholder for the hackathon's resume endpoint.
  • Request Body: (Currently none)

Connecting to Puch AI

Once deployed, you should be able to connect your MCP server to Puch AI using the command mentioned in the hackathon instructions. It will likely be something like this, executed in WhatsApp:

/mcp connect <your_render_url>/mcp <your_auth_token>

Make sure to replace <your_render_url> with the URL provided by Render and <your_auth_token> with the token provided by the hackathon organizers. Always refer to the official hackathon documentation for the exact command and procedure.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选