Weather MCP Server

Weather MCP Server

Enables users to get detailed weather forecasts for any location using coordinates and retrieve active weather alerts for US states. Uses the National Weather Service API with no authentication required.

Category
访问服务器

README

Weather MCP Server

A Model Context Protocol (MCP) server that provides weather forecasts and alerts using the National Weather Service API.

Built following the official Model Context Protocol server development guide

Quick Start (Mac/Linux)

1. Clone and Setup

# Clone the repository to your preferred location
git clone <repository-url> ~/weather-mcp
cd ~/weather-mcp

# Check the project structure
ls -la
# You should see: main.py, weather.py, pyproject.toml, README.md, etc.

2. Configure MCP Client

Add this configuration to your MCP client (e.g., Gemini CLI, Claude Desktop, etc.):

{
  "mcpServers": {
    "weather": {
      "command": "uv",
      "args": [
        "--directory",
        "~/weather-mcp",
        "run",
        "weather.py"
      ]
    }
  }
}

Important: Replace ~/weather-mcp with the actual path where you cloned the repository. For example:

  • If you cloned to your home directory: "/home/yourusername/weather-mcp"
  • If you cloned to a projects folder: "/home/yourusername/projects/weather-mcp"

3. Monitor Server Activity

The server logs all activity to help you understand what's happening:

# Navigate to your cloned repository
cd ~/weather-mcp

# Watch server logs in real-time
tail -f weather_mcp.log

Keep this terminal open while using the MCP server to see real-time logs of weather requests, API calls, and any errors.

How It Works

This MCP server acts as a bridge between your AI client and the National Weather Service API:

  1. Your AI client sends requests to the MCP server via stdio
  2. The MCP server processes requests and makes API calls to weather.gov
  3. Weather data is returned to your AI client in a structured format
  4. All activity is logged to weather_mcp.log for debugging and monitoring

Features

  • Weather Forecasts: Get detailed weather forecasts for any location using latitude/longitude coordinates
  • Weather Alerts: Retrieve active weather alerts for any US state
  • Server Information: Get details about the server configuration and capabilities
  • Comprehensive Logging: Built-in logging to both console and file with progress reporting

Development Setup

Prerequisites

  • Python 3.11+ installed
  • uv package manager (install uv)

Local Development

# 1. Clone the repository (if not already done)
git clone <repository-url> ~/weather-mcp-dev
cd ~/weather-mcp-dev

# 2. Install dependencies
uv sync

# 3. Test the server locally
uv run python weather.py

# 4. In another terminal, monitor logs
tail -f weather_mcp.log

Making Changes

  1. Edit the code: Modify weather.py or other files as needed
  2. Test your changes: Run uv run python weather.py to test locally
  3. Check logs: Monitor weather_mcp.log for any issues
  4. Update your MCP client: Restart your MCP client to pick up changes

Project Structure

weather-mcp/
├── weather.py          # Main MCP server implementation
├── main.py            # Alternative entry point
├── pyproject.toml     # Project configuration and dependencies
├── weather_mcp.log    # Server logs (created when running)
├── LOGGING.md         # Detailed logging documentation
└── README.md          # This file

Testing Tools

Once the server is running in your MCP client, you can test these tools:

get_forecast(latitude: float, longitude: float)

Get a detailed weather forecast for a specific location.

Example:

get_forecast(40.7128, -74.0060)  # New York City

get_alerts(state: str)

Get active weather alerts for a US state (2-letter state code).

Example:

get_alerts("CA")  # California alerts

server_info()

Get information about the server configuration and capabilities.

Configuration Details

The server uses the National Weather Service API with these settings:

  • User-Agent: weather-app/1.0
  • Base URL: https://api.weather.gov
  • Timeout: 30 seconds
  • Authentication: None required (public API)

Troubleshooting

Common Issues

  1. Server won't start: Check that uv is installed and the path in your MCP config is correct
  2. No weather data: Ensure you have internet connectivity and the weather.gov API is accessible
  3. MCP client can't connect: Verify the stdio connection and server logs

Debugging Steps

# Check if uv is installed
uv --version

# Test the server directly
cd ~/weather-mcp
uv run python weather.py

# Check recent logs
tail -20 weather_mcp.log

# Test with verbose logging
export MCP_LOG_LEVEL=debug
uv run python weather.py

Requirements

  • Python 3.11+
  • httpx>=0.28.1
  • mcp[cli]>=1.13.1

Contributing

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature-name
  3. Make your changes and test locally
  4. Check logs for any issues: tail -f weather_mcp.log
  5. Commit and push: git commit -m "Description" && git push
  6. Submit a pull request

API Reference

This server uses the National Weather Service API:

  • Base URL: https://api.weather.gov
  • Documentation: https://www.weather.gov/documentation/services-web-api
  • Rate Limits: None specified, but please be respectful
  • Authentication: None required

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选