Weather MCP Server
Demonstrates creating and connecting an MCP weather server using FastMCP, with support for integration with Claude Desktop, Cursor, and local LLMs to query weather alerts and information.
README
MCP Server Creation and MCP client connection (Agent-Claude,cursor or, custom server calling and integration with local LLMs).
This project demonstrates how to create and connect an MCP (Model Context Protocol) weather server using FastMCP.
📖 Want to learn more about MCP? Check out our Comprehensive MCP Guide for detailed explanations, concepts, and best practices.
Prerequisites
- Python 3.13+
uvpackage manager installed
Setup Instructions
1. Initialize the Project
Initialize a new project using uv:
uv init
2. Create Virtual Environment
Create a virtual environment for the project:
uv venv
3. Activate Virtual Environment
Activate the virtual environment:
Windows:
.venv\Scripts\activate
Linux/Mac:
source .venv/bin/activate
4. Install MCP CLI
Add the MCP CLI package to enable fast MCP CLI commands:
uv add "mcp[cli]"
Running the MCP Server
Development Mode
To run the MCP server in development mode:
uv run mcp dev server/weather.py
Expected Output:
Starting MCP inspector...
⚙️ Proxy server listening on localhost:6277
Connecting to Claude Desktop
Install Server to Claude
Add the weather server to Claude Desktop:
uv run mcp install server/weather.py
Expected Output:
Added server 'weather' to Claude config
Successfully installed weather in Claude app
Once installed, you can ask Claude questions like:
- "What are the weather alerts in CA?"
- The MCP server will be called automatically and display the results.
Manual Configuration for Cursor or Other Clients
For Cursor or other clients, you'll need to manually configure the server using the Claude Desktop config file format.
Get the server configuration from: claude_desktop_config file
Example Configuration:
"weather": {
"command": "C:\\Users\\gaura\\AppData\\Local\\Programs\\Python\\Python313\\Scripts\\uv.EXE",
"args": [
"run",
"--with",
"mcp[cli]",
"mcp",
"run",
"C:\\Users\\gaura\\OneDrive\\Desktop\\AI projects\\mcp_project\\server\\weather.py"
]
}
Note: Update the paths in the configuration to match your system paths.
Usage in Cursor:
- Go to MCP → mcp config.json
- Add the configuration above
Using MCP with Local LLMs (mcp-use)
mcp-use allows you to connect to MCP servers directly without an AI agent for programmatic tool access. This is useful for custom server calling and integration with local LLMs.
Installation
Install the mcp-use package:
uv add mcp-use
Configuration
Create a file named weather.json and add the following configuration to connect local LLMs to the MCP server:
{
"mcpServers": {
"weather": {
"command": "C:\\Users\\gaura\\AppData\\Local\\Programs\\Python\\Python313\\Scripts\\uv.EXE",
"args": [
"run",
"--with",
"mcp[cli]",
"mcp",
"run",
"C:\\Users\\gaura\\OneDrive\\Desktop\\AI projects\\mcp_project\\server\\weather.py"
]
}
}
}
Note: Update the paths in the configuration to match your system paths.
References
-
FastMCP: https://github.com/jlowin/fastmcp
- Create MCP servers and connect them to different clients like Claude, Cursor, etc.
-
mcp-use: https://github.com/mcp-use/mcp-use
- Connect to MCP servers directly without an AI agent for programmatic tool access (custom server calling and use)
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。