Weather MCP Server

Weather MCP Server

Provides real-time weather information for any city worldwide using the Open-Meteo API, returning current temperature, wind speed, and geographic coordinates through a containerized MCP server.

Category
访问服务器

README

Weather MCP Server 🌤️

A Model Context Protocol (MCP) server that provides real-time weather information for any city using the Open-Meteo API.

Features

  • 🌍 Get current weather for any city worldwide
  • 🌡️ Returns temperature in Celsius
  • 💨 Provides wind speed in km/h
  • 📍 Includes geographic coordinates
  • 🐳 Fully containerized with Docker
  • 🚀 Easy to deploy and use

Quick Start

Using Docker (Recommended)

Pull and run the pre-built image from Docker Hub:

docker pull 125478963/weather-mcp:latest
docker run -d -p 8000:8000 125478963/weather-mcp:latest

The server will be available at: http://localhost:8000/mcp

Building from Source

  1. Clone this repository:
git clone https://github.com/rajeevchandra/weather-mcp-docker.git
cd weather-mcp-docker
  1. Build the Docker image:
docker build -t weather-mcp .
  1. Run the container:
docker run -d -p 8000:8000 weather-mcp

Usage

This MCP server exposes a weather tool that can be used by MCP clients like Claude Desktop.

Available Tool

weather(city: str)

  • Returns current temperature (°C) and wind speed (km/h) for the specified city
  • Default city: Philadelphia

Example Response

{
  "city": "London",
  "latitude": 51.5074,
  "longitude": -0.1278,
  "temperature_c": 15.2,
  "windspeed_kmh": 12.5
}

Configuration

The server runs on:

  • Host: 0.0.0.0 (accessible from outside the container)
  • Port: 8000
  • Endpoint: /mcp

Using with MCP Clients

Claude Desktop

Add this to your Claude Desktop MCP settings:

{
  "mcpServers": {
    "weather": {
      "url": "http://localhost:8000/mcp"
    }
  }
}

Development

Prerequisites

  • Python 3.11+
  • Docker (optional, for containerization)

Local Development

  1. Install dependencies:
pip install -r requirements.txt
  1. Run the server:
python server.py

Testing

Run the complete test script to verify the server is working:

python complete_test.py

This will:

  1. Initialize a session with the MCP server
  2. List available tools
  3. Test the weather tool with multiple cities (London, Paris, Tokyo)
  4. Display real-time weather data

Expected Output:

✅ Session initialized successfully!
Server: WeatherMCP
Version: 1.20.0

🌍 Getting weather for London...
   ✅ Success!
      Temperature: 14.2°C
      Wind Speed: 15.3 km/h

Or use the quick health check:

curl http://localhost:8000/mcp

Project Structure

weather-mcp/
├── server.py           # Main MCP server implementation
├── requirements.txt    # Python dependencies
├── Dockerfile         # Docker configuration
├── easy_test.py       # Simple test script
└── README.md          # This file

How It Works

  1. Geocoding: Converts city names to coordinates using Open-Meteo Geocoding API
  2. Weather Data: Fetches current weather data using Open-Meteo Weather API
  3. MCP Protocol: Exposes weather data through the Model Context Protocol

API Credits

This server uses the Open-Meteo API which is free and requires no API key.

Docker Hub

Pre-built images are available on Docker Hub:

  • Latest: 125478963/weather-mcp:latest
  • Version 1: 125478963/weather-mcp:v1

View on Docker Hub

Troubleshooting

Server not responding?

Check if the container is running:

docker ps | grep weather-mcp

View logs:

docker logs <container-id>

Port already in use?

Use a different port:

docker run -d -p 8080:8000 125478963/weather-mcp:latest

License

MIT License - feel free to use and modify as needed.

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

Support

For issues and questions, please open an issue on GitHub.


Made with ❤️ using the Model Context Protocol

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选