Weather MCP Server

Weather MCP Server

A Model Context Protocol (MCP) server that provides real-time weather alerts and forecasts from the US National Weather Service.

Category
访问服务器

README

Weather MCP Project

A Model Context Protocol (MCP) server that provides real-time weather alerts and forecasts from the US National Weather Service. Built with modern Python practices, comprehensive testing, and production-ready deployment.

Tests Coverage Type Checking Code Quality Python

Features

  • Weather Alerts - Real-time alerts from the National Weather Service
  • Weather Forecasts - Detailed forecasts for any US location
  • Web Interface - Beautiful Streamlit UI for easy interaction
  • MCP Protocol - Standards-compliant Model Context Protocol server
  • Async/Await - High-performance asynchronous architecture
  • 100% Test Coverage - Comprehensive test suite with 53 tests
  • Type Safe - Full MyPy type checking compliance
  • Production Ready - Deployed and operational

Quick Start

Prerequisites

  • Python 3.13

1. Clone and Install

git clone <your-repo-url>
cd weather-mcp-project
pip install -r requirements.txt

2. Run the Web Interface

streamlit run ui.py

Open your browser to http://localhost:8501 and start exploring weather data!

3. Run the MCP Server

python -m weather_mcp.server

The MCP server will start on http://localhost:8000 with SSE transport.

Installation

Using pip

pip install -r requirements.txt

API Reference

Weather Alerts

Get active weather alerts for any US state:

await get_alerts(state: str) -> str

Parameters:

  • state (str): Two-letter US state code (e.g., "CA", "TX", "NY")

Returns:

  • Formatted string with active alerts or "No active alerts" message

Example:

alerts = await get_alerts("CA")
print(alerts)
# Output: Winter Storm Warning for Los Angeles County...

Weather Forecasts

Get detailed weather forecast for coordinates:

await get_forecast(latitude: float, longitude: float) -> str

Parameters:

  • latitude (float): Latitude coordinate
  • longitude (float): Longitude coordinate

Returns:

  • Formatted forecast string with 5-day outlook

Example:

forecast = await get_forecast(34.0522, -118.2437)  # Los Angeles
print(forecast)
# Output: Today: Temperature: 75°F, Wind: 10 mph SW...

MCP Tools

The server exposes two MCP tools:

  1. get_alerts - Fetch weather alerts by state
  2. get_forecast - Fetch weather forecast by coordinates

Development

Project Structure

weather-mcp-project/
├── weather_mcp/           # Core MCP server
│   ├── __init__.py
│   ├── server.py         # FastMCP server
│   ├── nws_api.py        # National Weather Service API client
│   └── tools.py          # Weather processing tools
├── client/               # MCP client
│   ├── __init__.py
│   └── client.py         # Client implementation
├── tests/                # Comprehensive test suite
│   ├── conftest.py       # Test configuration
│   ├── test_*.py         # Test modules
│   └── run_tests.py      # Test runner
├── ui.py                 # Streamlit web interface
├── requirements.txt      # Dependencies
├── pyproject.toml        # Project configuration
└── README.md            # This file

Code Quality

This project maintains high code quality standards:

  • 100% Test Coverage - Every line of code is tested
  • Type Checking - Full MyPy compliance
  • Linting - Ruff for code formatting and style
  • Standards - Follows Python best practices

Testing

Run with Coverage

python -m pytest --cov=weather_mcp --cov=client --cov-report=html --cov-report=term tests/

Test Coverage Report

After running tests with coverage, open htmlcov/index.html in your browser for a detailed coverage report.

Quality Checks

# Type checking
mypy .

# Linting and formatting
ruff check
ruff format

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选