Weather MCP Server
Enables AI assistants to fetch current weather conditions and forecasts for any city using the Open-Meteo API. Provides temperature, precipitation, and hourly forecast data through natural language queries.
README
Practice MCP JS
A Model Context Protocol (MCP) server implementation in TypeScript that provides weather information tools for AI assistants.
Description
This project demonstrates how to create an MCP server that exposes weather-related tools to Large Language Models (LLMs). The server provides a fetch-weather tool that retrieves current weather data and forecasts for any city using the Open-Meteo API.
Features
- Weather Tool: Fetch current weather conditions and forecasts for any city
- Input Validation: Uses Zod for robust input/output validation
- MCP Protocol: Compatible with AI assistants that support the Model Context Protocol
- TypeScript: Fully typed implementation for better development experience
Prerequisites
- Node.js (version 14 or higher)
- npm or yarn package manager
Installation
- Clone the repository:
git clone <repository-url>
cd practice-mcp-js
- Install dependencies:
npm install
Usage
Running the Server
To start the MCP server:
npx tsx main.ts
The server will start and listen for MCP connections via stdio transport.
Available Tools
fetch-weather
Retrieves weather information for a specified city.
Parameters:
city(string): Name of the city to get weather information for
Example Response: The tool returns current weather conditions including:
- Temperature
- Precipitation
- Day/night status
- Rain information
- Hourly forecast data
Project Structure
practice-mcp-js/
├── main.ts # Main server implementation
├── package.json # Project configuration and dependencies
├── package-lock.json # Dependency lock file
└── README.md # This file
Dependencies
- @modelcontextprotocol/sdk: Core MCP SDK for server implementation
- zod: Schema validation library for input/output validation
API Integration
This project integrates with the following external APIs:
- Open-Meteo Geocoding API: For converting city names to coordinates
- Open-Meteo Weather API: For retrieving weather data and forecasts
How It Works
- The server creates an MCP server instance with the name "PRO INDUSTRIAL MCP SERVER"
- It defines a
fetch-weathertool that:- Accepts a city name as input
- Geocodes the city name to get coordinates
- Fetches weather data using the coordinates
- Returns formatted weather information
- The server connects via stdio transport for communication with AI assistants
Development
The main server logic is implemented in main.ts:7-55. Key components include:
- Server initialization (
main.ts:7-10) - Tool definition (
main.ts:13-50) - Transport setup (
main.ts:54-55)
Error Handling
The weather tool includes error handling for:
- Cities that cannot be found
- API request failures
- Invalid input parameters (via Zod validation)
License
ISC
Contributing
This is a practice project for learning MCP server development. Feel free to fork and experiment with additional tools and features.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。
mcp-server-qdrant
这个仓库展示了如何为向量搜索引擎 Qdrant 创建一个 MCP (Managed Control Plane) 服务器的示例。