Web-Scout

Web-Scout

Enables AI-powered web searches using DuckDuckGo with automatic summarization via Google's Gemini AI. Supports both summary and detailed analysis modes for search results.

Category
访问服务器

README

Web-Scout: AI-Powered Search with LLM Summarization

A FastAPI application that performs web searches using DuckDuckGo and generates AI-powered summaries using Google's Gemini AI.

Features

  • Web search using DuckDuckGo
  • AI summarization using Gemini 2.5 Flash
  • Two output modes: Summary and Detailed analysis
  • Docker & Docker Compose ready
  • Secure API key management via environment variables
  • MCP (Model Context Protocol) support over HTTP

Prerequisites

  • Docker and Docker Compose installed
  • Google Gemini API key

Setup

  1. Clone the repository (or navigate to your project directory)

  2. Add your Gemini API key to the .env file:

    GEMINI_API_KEY=your_actual_gemini_api_key_here
    
  3. Build and run with Docker Compose:

    docker-compose up --build
    

API Usage

The application will be available at http://localhost:8000

Health Check

curl http://localhost:8000/health

Search Endpoint

Summary Mode (Default)

curl "http://localhost:8000/search?query=artificial+intelligence"
# or explicitly specify mode=summary
curl "http://localhost:8000/search?query=artificial+intelligence&mode=summary"

Detailed Mode

curl "http://localhost:8000/search?query=artificial+intelligence&mode=detailed"

Response Format

{
  "query": "your search query",
  "mode": "summary",
  "summary": "AI-generated analysis...",
  "sources_used": 10
}

MCP Server Integration

Web-Scout can also function as an MCP (Model Context Protocol) server, allowing AI assistants to perform web searches directly through tools.

MCP Features

  • Web Search Tool: Perform web searches with AI summarization
  • Dual Mode Support: Both summary and detailed analysis modes
  • HTTP Transport: MCP over HTTP protocol for client integration
  • JSON Responses: Structured output for easy integration

MCP Tools Available

Web Search Tool

  • Name: web_search
  • Description: Perform a web search using DuckDuckGo and generate AI-powered summaries
  • Parameters:
    • query (string, required): The search query to perform
    • mode (string, optional): Response mode - "summary" or "detailed" (default: "summary")

MCP Server Setup

Web-Scout provides MCP functionality over HTTP, accessible at the /mcp endpoint.

Method 1: Direct FastAPI Server

  1. Install dependencies:
pip install -r requirements.txt
  1. Set your Gemini API key:
export GEMINI_API_KEY=your_api_key_here
  1. Run the HTTP server with MCP endpoint:
python main.py

The MCP endpoint will be available at http://localhost:8000/mcp

Method 2: Docker Container

# Run the HTTP server with Docker (MCP available at /mcp)
docker-compose up --build

Or run standalone container

docker run -p 8000:8000 -e GEMINI_API_KEY=your_api_key_here web-scout

Integrating with AI Tools

To use Web-Scout as an MCP server with AI tools like Claude Desktop or Roo:

  1. Create MCP Configuration:
{
  "mcpServers": {
    "web-scout": {
      "command": "python",
      "args": ["-m", "uvicorn", "main:app", "--host", "0.0.0.0", "--port", "8000"],
      "env": {
        "GEMINI_API_KEY": "your_gemini_api_key_here"
      }
    }
  }
}
  1. Configure your AI tool to use the MCP configuration:

    • For Claude Desktop: Add to ~/Library/Application Support/Claude/claude_desktop_config.json
    • For Roo: Add to the appropriate configuration file
  2. Usage Example:

Can you search for the latest news about artificial intelligence?

The AI tool will use the Web-Scout MCP server (via the /mcp endpoint) to perform the search and provide summarized results.

Development

Local Development (without Docker)

# Install dependencies
pip install -r requirements.txt

# Set your API key
export GEMINI_API_KEY=your_api_key_here

# Run the application
uvicorn main:app --reload

Using Docker Compose

# Build and run
docker-compose up --build

# Run in background
docker-compose up -d --build

# Stop the application
docker-compose down

# View logs
docker-compose logs -f web-scout

Configuration

Environment Variables

  • GEMINI_API_KEY: Your Google Gemini API key (required)

Docker Configuration

  • Port: 8000
  • Container name: web-scout
  • Health check: Automatic health monitoring

Security Notes

  • The .env file is ignored by Git and should never be committed
  • API keys are mounted securely via Docker Compose volumes
  • The application uses health checks for monitoring

Error Handling

  • Returns proper HTTP status codes
  • Includes detailed error messages
  • Handles missing API keys and invalid parameters gracefully

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选