WebP Batch Converter

WebP Batch Converter

An MCP server that enables batch conversion of images to WebP format with configurable options like quality settings, lossless mode, and multi-threading support.

Category
访问服务器

README

WebP Batch Converter

A Model Context Protocol (MCP) server for batch converting images to WebP format with cross-platform support. Works seamlessly with MCP-aware IDEs like Cursor.

🌟 Features

  • 🖼️ Batch conversion of PNG, JPG, and JPEG files to WebP
  • 🌍 Cross-platform support (macOS, Linux, Windows)
  • Multi-threaded processing for fast conversions
  • 🎛️ Flexible options including quality control, lossless mode, and metadata preservation
  • 📊 Detailed reporting with file sizes and savings statistics
  • 🔧 Dual engine support - prefers Google's cwebp, falls back to Sharp
  • 🎯 MCP integration for use in AI-powered development environments

📦 Installation

Global Installation

npm install -g webp-batch-mcp

Local Development

git clone https://github.com/mhe8mah/webp-batch-mcp.git
cd webp-batch-mcp
npm install
npm run build

Docker

docker build -t webp-batch .
docker run -v /path/to/images:/data webp-batch

🚀 Usage

Command Line Interface

node dist/cli.js [options]

Options

  • --src <dir> - Source directory to scan (default: current directory)
  • --quality <0-100> - WebP quality setting (default: 75)
  • --lossless - Use lossless encoding (recommended for PNG)
  • --overwrite - Replace original files with WebP versions
  • --threads <n> - Number of concurrent conversions (default: CPU count)
  • --preserve-meta - Preserve EXIF and ICC metadata
  • --flat <dir> - Output all WebP files to specified directory

Examples

# Convert all images in current directory
node dist/cli.js

# High quality conversion of specific directory
node dist/cli.js --src ./photos --quality 95 --preserve-meta

# Lossless conversion with overwrite
node dist/cli.js --src ./images --lossless --overwrite

# Batch process to output directory
node dist/cli.js --src ./input --flat ./output --threads 8

MCP Server

The MCP server exposes a single tool: convert_to_webp

Tool Parameters

{
  "src": "string",          // Source directory (default: ".")
  "quality": "number",      // Quality 0-100 (default: 75)
  "lossless": "boolean",    // Lossless mode (default: false)
  "overwrite": "boolean",   // Replace originals (default: false)
  "threads": "number",      // Concurrent threads (default: CPU count)
  "preserveMeta": "boolean", // Keep metadata (default: false)
  "flat": "string"          // Output directory (optional)
}

⚙️ How to Add This Server in Cursor

  1. Clone and build the project:
git clone https://github.com/mhe8mah/webp-batch-mcp.git
cd webp-batch-mcp
npm install
npm run build
  1. Open Cursor Settings
  2. Navigate to FeaturesMCP
  3. Add a new server configuration:
{
  "mcpServers": {
    "webp-batch": {
      "command": "node",
      "args": ["/path/to/webp-batch-mcp/dist/server.js"]
    }
  }
}
  1. Restart Cursor
  2. The convert_to_webp tool will be available in your AI conversations

🔧 Technical Details

Conversion Strategy

  1. Primary Engine: Google's cwebp tool (included in libwebp-tools)

    • Fastest performance
    • Best compression
    • Full feature support
  2. Fallback Engine: Sharp (Node.js)

    • Pure JavaScript implementation
    • No external dependencies
    • Cross-platform compatibility

Output Behavior

  • Default: Creates .webp files alongside originals
  • Overwrite mode: Replaces originals with WebP versions
  • Flat mode: Outputs all WebP files to specified directory
  • Metadata preservation: Maintains EXIF and ICC profiles when requested

Performance

  • Utilizes all CPU cores by default
  • Processes images concurrently using p-limit
  • Provides real-time progress feedback
  • Reports detailed conversion statistics

🛠️ Development

Building

npm run build

Testing

npm test

Development Mode

npm run dev

📊 Test Results

Verified with real web images:

  • JPEG (35KB → 17KB): 51% space savings
  • PNG (7.9KB → 2.8KB): 65% space savings
  • Overall: 53% average compression

📋 Dependencies

Runtime

  • @modelcontextprotocol/sdk - MCP server framework
  • sharp - Image processing fallback
  • chalk - Colorized terminal output
  • commander - CLI argument parsing
  • glob - File pattern matching
  • p-limit - Concurrency control

Development

  • typescript - Type safety
  • tsup - Fast TypeScript bundler
  • jest - Testing framework

📄 License

MIT License - see LICENSE file for details.

🤝 Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Add tests for new functionality
  4. Ensure all tests pass
  5. Submit a pull request

🆘 Support

For issues and feature requests, please use the GitHub issue tracker.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选