WeChat MCP Server
Enables automation of WeChat on macOS through the Accessibility API, allowing LLMs to fetch recent messages from contacts and send replies based on conversation history.
README
WeChat MCP Server
This project provides an MCP server that automates WeChat on macOS using the Accessibility API and screen capture. It exposes tools that LLMs can call to:
- Fetch recent messages for a specific contact
- Generate and send a reply to a contact based on recent history
Environment setup (using uv)
This project uses uv for dependency and environment management.
-
Install
uv(if not already installed):curl -LsSf https://astral.sh/uv/install.sh | sh -
From the project root, create/sync the environment:
cd WeChat-MCP uv syncThis will create a virtual environment (if needed) and install dependencies defined in
pyproject.toml.
Add the MCP server to configuration
<details> <summary>Claude Code</summary>
claude mcp add --transport stdio wechat-mcp -- uv --directory $(pwd) run wechat-mcp
</details>
The MCP server entrypoint is wechat_mcp.mcp_server:main, exposed as the wechat-mcp console script.
Typical invocation:
uv run wechat-mcp --transport stdio
Supported transports:
stdio(default)streamable-http(with--port, default3001)sse(with--port, default3001)
Example:
uv run wechat-mcp --transport streamable-http --port 3001
Tools exposed to MCP clients
The server is implemented in src/wechat_mcp/mcp_server.py and defines two @mcp.tool() functions:
-
fetch_messages_by_contact(contact_name: str, last_n: int = 50) -> list[dict]Opens the chat forcontact_name(first via the left session list, then via the search box if needed), then uses scrolling plus screenshots to collect the true lastlast_nmessages, even if they span multiple screens of history. Each message is a JSON object:{ "sender": "ME" | "OTHER" | "UNKNOWN", "text": "message text" } -
reply_to_messages_by_contact(contact_name: str, reply_message: str | null = null, last_n: int = 50) -> dictEnsures the chat forcontact_nameis open (skipping an extra click when the current chat already matches), and (optionally) sends the providedreply_messageusing the Accessibility-basedsend_messagehelper. This tool is intended to be driven by the LLM that is already using this MCP: first callfetch_messages_by_contact, then compose a reply, then call this tool with that reply. Returns:{ "contact_name": "The contact", "reply_message": "The message that was sent (or null)", "sent": true }
If an error occurs, the tools return an object containing an "error" field describing the issue.
Logging
The project has a comprehensive logging setup:
- Logs are written to a rotating file under the
logs/directory (by defaultlogs/wechat_mcp.log) - Logs are also sent to the terminal (stdout)
You can customize the log directory via:
WECHAT_MCP_LOG_DIR– directory path where.logfiles should be stored (defaults tologsunder the current working directory)
macOS and Accessibility requirements
Because this project interacts with WeChat via the macOS Accessibility API:
- WeChat must be running (
com.tencent.xinWeChat) - The Python process (or the terminal app running it) must have Accessibility permissions enabled in System Settings → Privacy & Security → Accessibility
The helper scripts and MCP tools rely on:
- Accessibility tree inspection to find chat lists, search fields, and message lists
- Screen capture to classify message senders (
MEvsOTHERvsUNKNOWN) - Synthetic keyboard events to search, focus inputs, and send messages
TODO
- [x] Detect and switch to contact by clicking
- [x] Scroll to get full/more history messages
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。