WeChat MCP Server

WeChat MCP Server

Enables automation of WeChat on macOS through the Accessibility API, allowing LLMs to fetch recent messages from contacts and send replies based on conversation history.

Category
访问服务器

README

WeChat MCP Server

This project provides an MCP server that automates WeChat on macOS using the Accessibility API and screen capture. It exposes tools that LLMs can call to:

  • Fetch recent messages for a specific contact
  • Generate and send a reply to a contact based on recent history

Environment setup (using uv)

This project uses uv for dependency and environment management.

  1. Install uv (if not already installed):

    curl -LsSf https://astral.sh/uv/install.sh | sh
    
  2. From the project root, create/sync the environment:

    cd WeChat-MCP
    uv sync
    

    This will create a virtual environment (if needed) and install dependencies defined in pyproject.toml.

Add the MCP server to configuration

<details> <summary>Claude Code</summary>

claude mcp add --transport stdio wechat-mcp -- uv --directory $(pwd) run wechat-mcp

</details>

The MCP server entrypoint is wechat_mcp.mcp_server:main, exposed as the wechat-mcp console script.

Typical invocation:

uv run wechat-mcp --transport stdio

Supported transports:

  • stdio (default)
  • streamable-http (with --port, default 3001)
  • sse (with --port, default 3001)

Example:

uv run wechat-mcp --transport streamable-http --port 3001

Tools exposed to MCP clients

The server is implemented in src/wechat_mcp/mcp_server.py and defines two @mcp.tool() functions:

  • fetch_messages_by_contact(contact_name: str, last_n: int = 50) -> list[dict] Opens the chat for contact_name (first via the left session list, then via the search box if needed), then uses scrolling plus screenshots to collect the true last last_n messages, even if they span multiple screens of history. Each message is a JSON object:

    {
      "sender": "ME" | "OTHER" | "UNKNOWN",
      "text": "message text"
    }
    
  • reply_to_messages_by_contact(contact_name: str, reply_message: str | null = null, last_n: int = 50) -> dict Ensures the chat for contact_name is open (skipping an extra click when the current chat already matches), and (optionally) sends the provided reply_message using the Accessibility-based send_message helper. This tool is intended to be driven by the LLM that is already using this MCP: first call fetch_messages_by_contact, then compose a reply, then call this tool with that reply. Returns:

    {
      "contact_name": "The contact",
      "reply_message": "The message that was sent (or null)",
      "sent": true
    }
    

If an error occurs, the tools return an object containing an "error" field describing the issue.

Logging

The project has a comprehensive logging setup:

  • Logs are written to a rotating file under the logs/ directory (by default logs/wechat_mcp.log)
  • Logs are also sent to the terminal (stdout)

You can customize the log directory via:

  • WECHAT_MCP_LOG_DIR – directory path where .log files should be stored (defaults to logs under the current working directory)

macOS and Accessibility requirements

Because this project interacts with WeChat via the macOS Accessibility API:

  • WeChat must be running (com.tencent.xinWeChat)
  • The Python process (or the terminal app running it) must have Accessibility permissions enabled in System Settings → Privacy & Security → Accessibility

The helper scripts and MCP tools rely on:

  • Accessibility tree inspection to find chat lists, search fields, and message lists
  • Screen capture to classify message senders (ME vs OTHER vs UNKNOWN)
  • Synthetic keyboard events to search, focus inputs, and send messages

TODO

  • [x] Detect and switch to contact by clicking
  • [x] Scroll to get full/more history messages

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选