WeWork MCP Server
A Model Context Protocol server providing access to WeWork project management data, enabling project search, task analysis, and statistics retrieval through Claude and other LLM clients.
README
WeWork MCP Server
A Model Context Protocol (MCP) server that provides access to WeWork project management data through Claude and other LLM clients. This server exposes WeWork project information, task analysis, and project management tools.
Features
🔍 Project Search
- Search projects by name with fuzzy matching
- Find best matching projects using cosine similarity
- Get list of all available projects
📊 Project Analysis
- Detailed task analysis within projects
- Completion progress statistics
- Task categorization by status and assignee
- Export data to CSV files
📋 Information Management
- Get detailed project information
- Track deadlines and completion dates
- Analyze task failure reasons
Prerequisites
- Python 3.12+
- WeWork API access token
- uv package manager
Installation
- Clone this repository:
git clone <repository-url>
cd wework-mcp-server
- Install dependencies:
uv sync
Configuration
Local Setup
1. WeWork Access Token
Option A: Environment Variable (Recommended)
Create a .env file in the project root:
WEWORK_ACCESS_TOKEN=your_actual_wework_token_here
Option B: Direct Configuration
Update the WEWORK_ACCESS_TOKEN in wework_mcp_server.py with your actual WeWork API token.
2. Claude Desktop Configuration (Local)
Add this server to your Claude Desktop configuration file:
Windows: %APPDATA%/Claude/claude_desktop_config.json
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Linux: ~/.config/claude/claude_desktop_config.json
{
"mcpServers": {
"WeWork Task Analysis Server": {
"command": "uv",
"args": [
"--directory",
"/path/to/wework-mcp-server",
"run",
"wework_mcp_server.py"
]
}
}
}
3. Restart Claude Desktop
After adding the configuration, restart Claude Desktop to apply changes.
Remote Deployment 🚀
Deploy the server to cloud platforms for remote access by Claude.
Quick Deploy với Railway (Khuyến nghị)
# Install Railway CLI
npm install -g @railway/cli
# Deploy
chmod +x deploy_scripts.sh
./deploy_scripts.sh
# Choose option 1 (Railway)
Deploy Options
- Railway:
./deploy_scripts.sh→ option 1 - Docker:
docker-compose up --build - Heroku:
./deploy_scripts.sh→ option 4 - Manual: Xem
DEPLOY_GUIDE.md
Remote Claude Configuration
Sau khi deploy, cập nhật Claude config:
{
"mcpServers": {
"wework-remote": {
"command": "curl",
"args": ["-X", "GET", "https://your-app.railway.app/api/test"]
}
}
}
📖 Chi tiết: Xem DEPLOY_GUIDE.md cho hướng dẫn deploy đầy đủ.
Usage
Example Prompts
- "Show me all available projects"
- "Find project 'marketing campaign'"
- "Analyze tasks for project ID 12345"
- "Get statistics for the development project"
- "Export task analysis to CSV"
Available Resources
file://projects/available- List all available WeWork projects
Available Tools
MCP Tools (Local)
search_projects- Search for projects by namefind_project_by_name- Find project with similarity matchingget_project_details- Get detailed information about a specific projectanalyze_project_tasks- Analyze tasks within a projectget_project_statistics- Get comprehensive project statistics
HTTP Endpoints (Remote)
GET /health- Health checkGET /api/test- Test WeWork connectionGET /api/projects?search=<text>- Search projectsPOST /api/project/details- Get project detailsPOST /api/project/analyze- Analyze project tasks
Development
Run Server for Testing
# Using uv
uv run wework_mcp_server.py
# Or with Python
python wework_mcp_server.py
# Run tests
python test_wework_server.py
Data Structure
Task Analysis DataFrame Columns
| Column | Description |
|---|---|
Loại công việc |
Task category |
Tên công việc |
Task name |
Công việc con |
Subtask (if any) |
Người thực hiện |
Assignee |
Người liên quan |
Related people |
Mô tả công việc |
Task description |
Trạng thái |
Status (Completed/In Progress/Failed) |
Kết quả đạt được |
Achievement results |
Lí do thất bại |
Failure reason |
Ngày bắt đầu |
Start date |
Deadline |
Due date |
Ngày hoàn thành |
Completion date |
Troubleshooting
Common Issues
- Access token expired: Update token in
.envfile orwework_mcp_server.py - Dependencies not found: Run
uv syncto install all dependencies - Claude Desktop doesn't recognize server: Check file paths in config and restart Claude Desktop
- CSV encoding issues: Files are exported with UTF-8-BOM encoding
Debug Mode
python wework_mcp_server.py --debug
Security Notes
⚠️ Important: For production use:
- Always use environment variables (
.envfile) instead of hardcoding tokens - Add
.envto your.gitignoreto prevent committing sensitive data - Do not commit access tokens to git repository
- Use only in trusted environments
- Regularly rotate your access tokens
License
This project is licensed under the MIT License.
Acknowledgments
- WeWork for providing the project management platform and API
- Model Context Protocol team for the MCP framework
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。