Whisper Speech Recognition MCP Server
Enables high-performance audio transcription using Faster Whisper with CUDA acceleration, supporting single and batch audio file processing with multiple output formats (VTT, SRT, JSON).
README
Whisper Speech Recognition MCP Server
中文文档
A high-performance speech recognition MCP server based on Faster Whisper, providing efficient audio transcription capabilities.
Features
- Integrated with Faster Whisper for efficient speech recognition
- Batch processing acceleration for improved transcription speed
- Automatic CUDA acceleration (if available)
- Support for multiple model sizes (tiny to large-v3)
- Output formats include VTT subtitles, SRT, and JSON
- Support for batch transcription of audio files in a folder
- Model instance caching to avoid repeated loading
- Dynamic batch size adjustment based on GPU memory
Installation
Dependencies
- Python 3.10+
- faster-whisper>=0.9.0
- torch==2.6.0+cu126
- torchaudio==2.6.0+cu126
- mcp[cli]>=1.2.0
Installation Steps
- Clone or download this repository
- Create and activate a virtual environment (recommended)
- Install dependencies:
pip install -r requirements.txt
PyTorch Installation Guide
Install the appropriate version of PyTorch based on your CUDA version:
-
CUDA 12.6:
pip install torch==2.6.0 torchvision==0.21.0 torchaudio==2.6.0 --index-url https://download.pytorch.org/whl/cu126 -
CUDA 12.1:
pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url https://download.pytorch.org/whl/cu121 -
CPU version:
pip install torch==2.6.0 torchvision==0.21.0 torchaudio==2.6.0 --index-url https://download.pytorch.org/whl/cpu
You can check your CUDA version with nvcc --version or nvidia-smi.
Usage
Starting the Server
On Windows, simply run start_server.bat.
On other platforms, run:
python whisper_server.py
Configuring Claude Desktop
-
Open the Claude Desktop configuration file:
- Windows:
%APPDATA%\Claude\claude_desktop_config.json - macOS:
~/Library/Application Support/Claude/claude_desktop_config.json
- Windows:
-
Add the Whisper server configuration:
{
"mcpServers": {
"whisper": {
"command": "python",
"args": ["D:/path/to/whisper_server.py"],
"env": {}
}
}
}
- Restart Claude Desktop
Available Tools
The server provides the following tools:
- get_model_info - Get information about available Whisper models
- transcribe - Transcribe a single audio file
- batch_transcribe - Batch transcribe audio files in a folder
Performance Optimization Tips
- Using CUDA acceleration significantly improves transcription speed
- Batch processing mode is more efficient for large numbers of short audio files
- Batch size is automatically adjusted based on GPU memory size
- Using VAD (Voice Activity Detection) filtering improves accuracy for long audio
- Specifying the correct language can improve transcription quality
Local Testing Methods
- Use MCP Inspector for quick testing:
mcp dev whisper_server.py
-
Use Claude Desktop for integration testing
-
Use command line direct invocation (requires mcp[cli]):
mcp run whisper_server.py
Error Handling
The server implements the following error handling mechanisms:
- Audio file existence check
- Model loading failure handling
- Transcription process exception catching
- GPU memory management
- Batch processing parameter adaptive adjustment
Project Structure
whisper_server.py: Main server codemodel_manager.py: Whisper model loading and cachingaudio_processor.py: Audio file validation and preprocessingformatters.py: Output formatting (VTT, SRT, JSON)transcriber.py: Core transcription logicstart_server.bat: Windows startup script
License
MIT
Acknowledgements
This project was developed with the assistance of these amazing AI tools and models:
- GitHub Copilot - AI pair programmer
- Trae - Agentic AI coding assistant
- Cline - AI-powered terminal
- DeepSeek - Advanced AI model
- Claude-3.7-Sonnet - Anthropic's powerful AI assistant
- Gemini-2.0-Flash - Google's multimodal AI model
- VS Code - Powerful code editor
- Whisper - OpenAI's speech recognition model
- Faster Whisper - Optimized Whisper implementation
Special thanks to these incredible tools and the teams behind them.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。