
Wiki MCP Server
An MCP Server implementation that enables managing Confluence wiki pages through natural language queries, supporting operations like creating, updating, deleting, and searching pages across different knowledge bases.
README
📚 Wiki MCP Server
An MCP (Model Context Protocol) Server implementation for managing Confluence wiki pages.
Supports:
- Creating new wiki pages
- Updating existing wiki pages
- Deleting wiki pages
- Searching wiki pages by keyword
- Auto-selecting correct Confluence knowledge base (
alm
,wpb
, etc.) based on user query
Built with FastAPI, following MCP Server Best Practices, and ready for production deployment.
🚀 Tech Stack
- Python 3.10+
- FastAPI
- MCP SDK
- Requests (for Confluence API interaction)
- ContextVars (for session management)
📦 Project Structure
wiki_mcp_server/
├── src/wiki_mcp_server/
│ ├── server.py # MCP server entry point
│ ├── service.py # Business logic (Confluence API interactions)
│ ├── tools.py # MCP tool definitions
│ ├── prompts.py # MCP prompt definitions
│ ├── resources.py # MCP resource definitions
│ ├── utils.py # Helper functions (wiki_type inference etc.)
│ ├── utils/session_context.py # Session context manager
│ └── middleware.py # Authentication and session initialization middleware
├── Dockerfile # Container configuration
├── requirements.txt # Python dependencies
├── README.md # Project documentation
├── smithery.yaml # Smithery integration config (optional)
└── pyproject.toml # Python project metadata
⚙️ Installation
- Clone the repository:
git clone https://your-repo-url/wiki_mcp_server.git
cd wiki_mcp_server
- Install dependencies:
pip install -r requirements.txt
- (Optional) Configure your environment variables if needed.
🛠 Running Locally
Run the server:
cd src
uvicorn wiki_mcp_server.server:app --host 0.0.0.0 --port 9999 --reload
After startup, you can visit:
- OpenAPI docs (Swagger UI): http://localhost:9999/docs
- ReDoc docs: http://localhost:9999/redoc
🧪 Example Request
Headers Required:
Key | Example Value |
---|---|
user_name | john.doe@domain.com |
alm_confluence_base_url | https://your-confluence-site/wiki/rest/api |
alm_confluence_api_token | your-api-token |
wpb_confluence_base_url | (optional if available) |
wpb_confluence_api_token | (optional if available) |
⚠️ If headers are missing or invalid, server will return HTTP 400 error.
Example: Create Page
POST /create_page
{
"space_key": "TEST",
"title": "Test Page Created by MCP Server",
"content": "<p>Hello, World!</p>",
"user_query": "Please create a page in GSNA knowledge base."
}
Behavior:
- Server will infer
wiki_type=alm
from user_query. - Create the page in Confluence and return page metadata.
🧠 Auto Inference Logic
- If the query mentions
gsna
,global
,alm-confluence
→ alm - If the query mentions
wpb
,wealth
→ wpb - Otherwise default to alm
(You can also manually specify wiki_type
in input)
🐳 Docker (Optional)
Build and run containerized server:
docker build -t wiki-mcp-server .
docker run -d -p 9999:9999 --name wiki-mcp-server wiki-mcp-server
📜 License
MIT License.
📞 Contact
For issues or collaboration requests, please contact:
- Developer: Shawn
- Email: gsqasxb@gmail.com
- Project maintained by internal MCP Working Group
---# wiki_mcp_server
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。