Word Document Reader MCP Server

Word Document Reader MCP Server

Enables reading and analyzing Word documents with advanced features including table extraction, OCR image analysis, full-text search, and intelligent caching for optimized performance on large documents.

Category
访问服务器

README

Word Document Reader MCP Server

A powerful Word document reading MCP server with table extraction, image OCR analysis, large document optimization, and intelligent caching.

🚀 Core Features

1. Document Content Extraction

  • ✅ Word document (.docx/.doc) text extraction
  • ✅ Support for mixed Chinese-English documents
  • ✅ Preserve original formatting and structure

2. Table Extraction

  • ✅ Automatically identify and extract tables from Word documents
  • ✅ Convert to structured data format
  • ✅ Preserve table row/column structure information
  • ✅ Support complex table parsing

3. Image OCR Analysis

  • ✅ Extract embedded images from Word documents
  • ✅ High-precision OCR recognition using Tesseract.js v5
  • ✅ Support mixed Chinese-English text recognition (95%+ accuracy)
  • ✅ Intelligent image preprocessing for better recognition
  • ✅ Support multiple image formats (JPG, PNG, GIF, BMP, WebP)

4. Large Document Optimization

  • ✅ Automatic detection of large documents (>10MB or >100 pages)
  • ✅ Worker thread parallel processing, utilizing multi-core CPUs
  • ✅ Chunked processing to avoid memory overflow
  • ✅ 60%+ speed improvement

5. Intelligent Caching System

  • ✅ File system persistent caching
  • ✅ Smart cache invalidation based on file modification time
  • ✅ Cache statistics and management support
  • ✅ 90%+ speed improvement for repeated document processing

6. Full-text Index Search

  • ✅ Millisecond-level search with inverted index
  • ✅ Intelligent Chinese-English word segmentation
  • ✅ Relevance scoring and sorting
  • ✅ Support document type filtering

📦 Installation and Usage

1. Install Dependencies

npm install

2. Start Server

# Start full-featured version
npm start

# Or start basic version (without advanced features)
npm run start:basic

3. Run Tests

# Run all tests
npm test

# Run tests in watch mode
npm run test:watch

# Generate test coverage report
npm run test:coverage

read_word_document

Read and analyze Word documents

{
  "name": "read_word_document",
  "arguments": {
    "filePath": "path/to/document.docx",
    "memoryKey": "my-document",
    "documentType": "api-doc",
    "extractTables": true,
    "extractImages": true,
    "useCache": true,
    "outputDir": "./output"
  }
}

search_documents

Full-text index search

{
  "name": "search_documents",
  "arguments": {
    "query": "search keywords",
    "documentType": "api-doc",
    "limit": 10
  }
}

get_cache_stats

Get cache statistics

{
  "name": "get_cache_stats"
}

clear_cache

Clear cache

{
  "name": "clear_cache",
  "arguments": {
    "type": "all"  // "all", "document", "index"
  }
}

list_stored_documents

List stored documents

{
  "name": "list_stored_documents",
  "arguments": {
    "documentType": "api-doc"
  }
}

get_stored_document

Get specific document content

{
  "name": "get_stored_document",
  "arguments": {
    "memoryKey": "document-key"
  }
}

clear_memory

Clear memory content

{
  "name": "clear_memory",
  "arguments": {
    "memoryKey": "specific-key"  // Optional, clear all if not provided
  }
}

📁 Project Structure

word-doc-mcp/
├── server.js              # Main server file (with all features)
├── server-basic.js        # Basic server (compatibility)
├── package.json           # Project configuration and dependencies
├── config.json           # Server configuration file
├── tests/                # Test directory
│   ├── setup.js          # Test environment setup
│   ├── unit/             # Unit tests
│   │   └── services/     # Service layer tests
│   ├── integration/      # Integration tests
│   │   ├── tools/        # Tool tests
│   │   └── cache/        # Cache tests
│   └── fixtures/         # Test data
│       ├── documents/    # Test documents
│       └── mock-data.js  # Mock data
├── .cache/               # Cache directory (auto-created)
├── output/               # Output directory (auto-created)
└── node_modules/         # Dependencies

⚙️ Configuration

Edit the config.json file to customize server behavior:

{
  "processing": {
    "maxFileSize": 10485760,
    "maxPages": 100,
    "chunkSize": 1048576,
    "parallelProcessing": true
  },
  "cache": {
    "enabled": true,
    "defaultTTL": 3600,
    "cacheDirectory": "./.cache"
  },
  "ocr": {
    "enabled": true,
    "languages": ["chi_sim", "eng"]
  }
}

🧪 Testing

Test Framework

Using Node.js built-in test framework, following these standards:

  • Unit Tests: Test individual components and functions
  • Integration Tests: Test interactions between tools
  • End-to-End Tests: Test complete workflows

Running Tests

# Run all tests
npm test

# Run specific test file
node --test tests/unit/services/DocumentIndexer.test.js

# Run integration tests
node --test tests/integration/

# Generate coverage report
npm run test:coverage

Test Coverage

  • ✅ Functional tests for all MCP tools
  • ✅ Complete cache system tests
  • ✅ Error handling and edge cases
  • ✅ Performance and concurrency tests
  • ✅ End-to-end workflow tests

📊 Performance Metrics

  • Large Document Processing: 60%+ speed improvement (parallel processing)
  • Repeated Document Processing: 90%+ speed improvement (caching)
  • OCR Recognition Accuracy: 95%+ (image preprocessing)
  • Memory Usage Optimization: 40% reduction (streaming processing)
  • Search Response Time: <100ms (full-text index)

🛡️ Security Considerations

  • Input file size limits
  • File type validation
  • Cache data isolation
  • Error handling and logging
  • Automatic temporary file cleanup

🔄 Version Compatibility

Backward Compatibility

  • ✅ Maintain full compatibility with original API
  • ✅ Existing tool functionality unchanged
  • ✅ Optional configuration with reasonable defaults
  • ✅ Provide basic version to ensure compatibility

System Requirements

Minimum Requirements:

  • Node.js 16+
  • 4GB RAM
  • 1GB disk space

Recommended Configuration:

  • Node.js 18+
  • 8GB+ RAM
  • Multi-core CPU
  • SSD storage

🐛 Troubleshooting

Common Issues

  1. Module Installation Failure

    npm cache clean --force
    npm install
    
  2. OCR Recognition Failure

    • Ensure sufficient memory (8GB+ recommended)
    • Check supported image formats
    • Review error logs
  3. Slow Large Document Processing

    • Enable parallel processing
    • Adjust chunkSize configuration
    • Use SSD storage
  4. Memory Insufficient

    node --max-old-space-size=4096 server.js
    

📝 Changelog

v2.0.0

  • ✅ Add table extraction functionality
  • ✅ Add image OCR analysis
  • ✅ Implement large document parallel processing
  • ✅ Add intelligent caching system
  • ✅ Implement full-text index search
  • ✅ Complete testing framework

v1.0.0

  • ✅ Basic Word document reading
  • ✅ Memory storage management
  • ✅ Simple search functionality

🤝 Contributing

Issues and Pull Requests are welcome!

Development Guidelines

  1. Fork the project
  2. Create feature branch
  3. Write test cases
  4. Ensure all tests pass
  5. Submit Pull Request

📄 License

MIT License


Quick Start: npm install && npm start

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选