Word MCP

Word MCP

Enables programmatic generation of Microsoft Word documents (.docx) from AI-generated text and data, with support for Markdown formatting, tables, headers, and rich document elements that are saved directly to the local file system.

Category
访问服务器

README

Word MCP

A Model Context Protocol (MCP) server for generating Microsoft Word documents (.docx) programmatically. Unlike typical MCP servers that act as gateways to APIs, this server acts as a Factory, converting AI-generated text and data into professional, downloadable files.

Features

Document Generation

  • generate_report: Create complete Word documents in one shot
  • Markdown Support: Automatically converts basic Markdown (bold, lists) into Word formatting
  • Rich Elements: Supports:
    • Headers (Levels 1-3)
    • Data Tables with custom headers
    • Text Paragraphs
    • File metadata (Titles, Authors)

Architecture

  • Local File Output: Saves files directly to your host machine
  • Dockerized Factory: Runs securely in a container with volume mapping
  • Stateless Operation: No complex databases required

Simple Setup

1. Local Development

  1. Install dependencies:

    npm install
    
  2. Create a .env file (Optional, defaults to ./output):

    OUTPUT_DIR=./generated_reports
    
  3. Build and start:

    npm run build
    npm start
    

2. Docker Usage

Critical Note: Because this server creates files, you must mount a volume to see the output.

  1. Build the image:

    docker build -t word-mcp .
    
  2. Run with Volume Mapping:

    docker run --rm -i \
      -v $(pwd)/generated_reports:/app/output \
      word-mcp
    

MCP Client Integration

Configuration for Claude Desktop

To allow the AI to save files to your Windows "Documents" folder, you must map the volume in the configuration.

  1. Open your config file:

    • Windows: %APPDATA%\Claude\claude_desktop_config.json
    • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
  2. Add this configuration:

    {
      "mcpServers": {
        "word-mcp": {
          "command": "docker",
          "args": [
            "run",
            "--rm",
            "-i",
            "-v", "C:\\Users\\hp\\Documents\\mcp\\word-mcp\\generated_reports:/app/output",
            "word-mcp"
          ]
        }
      }
    }
    

    Note: Update the path C:\\Users\\hp... to match your actual project location.

Using with Docker Compose

If you prefer docker-compose, use the included configuration:

# docker-compose.yml
services:
  word-mcp:
    build: .
    volumes:
      - ./generated_reports:/app/output

Usage Examples

Generate a Project Audit

The AI can call the tool with structured data to create a formatted report.

{
  "filename": "Audit_Report_2024",
  "title": "Q4 Security Audit",
  "sections": [
    {
      "heading": "Executive Summary",
      "content": "The audit was completed on **January 20th**. No critical vulnerabilities were found."
    },
    {
      "heading": "Vulnerability Matrix",
      "table": {
        "headers": ["Severity", "Count", "Status"],
        "rows": [
          ["High", "0", "Pass"],
          ["Medium", "2", "Investigating"]
        ]
      }
    }
  ]
}

Troubleshooting

"I can't find the generated file"

  • Check Volume Mapping: Ensure your claude_desktop_config.json has the -v flag pointing to a valid folder on your host machine.
  • Docker Permissions: The container runs as a non-root user (appuser). Ensure your host folder allows writing (usually automatic on Windows, but requires chmod on Linux).

"Error: Output directory does not exist"

The server attempts to create the directory on startup. If using Docker, ensure the internal path /app/output is correctly mapped.

"Formatting looks wrong"

Currently, the Markdown parser supports bold (**text**) and basic paragraph splitting. Complex Markdown (like code blocks or nested lists) will be rendered as plain text in this version.

Development

Run in development mode:

npm run dev

Watch for changes:

npm run watch

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选