WorkFlowy MCP Server

WorkFlowy MCP Server

Enables interaction with WorkFlowy's outline and task management system through 8 comprehensive tools. Supports creating, updating, searching, and managing hierarchical nodes and tasks with high-performance async operations.

Category
访问服务器

README

WorkFlowy MCP Server

A Model Context Protocol (MCP) server that integrates WorkFlowy's outline and task management capabilities with LLM applications like Claude Desktop.

Features

  • 8 MCP Tools for complete WorkFlowy node management
  • FastMCP Framework for reliable MCP implementation
  • High Performance with async operations and rate limiting
  • Automatic Retry with exponential backoff
  • Structured Logging for debugging and monitoring

MCP Tools Available

Tool Description
workflowy_create_node Create new nodes with name, notes, and priority
workflowy_update_node Update existing node properties
workflowy_get_node Retrieve a specific node by ID
workflowy_list_nodes List nodes with filtering and pagination
workflowy_delete_node Delete a node and its children
workflowy_complete_node Mark a node as completed
workflowy_uncomplete_node Mark a node as uncompleted
workflowy_search_nodes Search nodes by text query

Quick Start

Prerequisites

  • Python 3.10 or higher
  • WorkFlowy account with API access
  • Claude Desktop or other MCP-compatible client

Installation

Option 1: Install from PyPI (Recommended)

# Install the package
pip install workflowy-mcp

Option 2: Quick Setup Script

# Download and run the setup script
curl -sSL https://raw.githubusercontent.com/yourusername/workflowy-mcp/main/install.sh | bash

# Or on Windows:
# irm https://raw.githubusercontent.com/yourusername/workflowy-mcp/main/install.ps1 | iex

Option 3: Manual Installation from Source

# Clone the repository (if you want to contribute or modify)
git clone https://github.com/vladzima/workflowy-mcp.git
cd workflowy-mcp
pip install -e .

Configuration

  1. Get your WorkFlowy API key:

  2. Configure Claude Desktop or another client: Edit your client configuration (Claude Desktop example):

    • Mac: ~/Library/Application Support/Claude/claude_desktop_config.json
    • Windows: %APPDATA%\Claude\claude_desktop_config.json

    Add to the mcpServers section:

    {
      "mcpServers": {
        "workflowy": {
          "command": "python3",
          "args": ["-m", "workflowy_mcp"],
          "env": {
            "WORKFLOWY_API_KEY": "your_actual_api_key_here",
            // Optional settings (uncomment to override defaults):
            // "WORKFLOWY_API_BASE_URL": "https://beta.workflowy.com/api",
            // "WORKFLOWY_REQUEST_TIMEOUT": "30",
            // "WORKFLOWY_MAX_RETRIES": "3",
            // "WORKFLOWY_RATE_LIMIT_REQUESTS": "60",
            // "WORKFLOWY_RATE_LIMIT_WINDOW": "60"
          }
        }
      }
    }
    
  3. Restart your client to load the MCP server

Usage

Once configured, you can use WorkFlowy tools with your agent:

"Create a new WorkFlowy node called 'Project Ideas' with high priority"

"List all my uncompleted tasks"

"Search for nodes containing 'meeting'"

"Mark the node with ID abc123 as completed"

"Update the 'Weekly Goals' node with new notes"

Development

Setup Development Environment

# Create virtual environment
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Install in development mode
pip install -e ".[dev]"

# Run tests
pytest

# Run with coverage
pytest --cov=workflowy_mcp

# Run linting
ruff check src/
mypy src/
black src/ --check

Project Structure

workflowy-mcp/
├── src/
│   └── workflowy_mcp/
│       ├── __init__.py
│       ├── __main__.py          # Entry point
│       ├── server.py            # FastMCP server & tools
│       ├── config.py            # Configuration
│       ├── transport.py         # STDIO transport
│       ├── client/
│       │   ├── api_client.py    # WorkFlowy API client
│       │   ├── rate_limit.py    # Rate limiting
│       │   └── retry.py         # Retry logic
│       ├── models/
│       │   ├── node.py          # Node models
│       │   ├── requests.py      # Request models
│       │   ├── config.py        # Config models
│       │   └── errors.py        # Error models
│       └── middleware/
│           ├── errors.py        # Error handling
│           └── logging.py       # Request logging
├── tests/
│   ├── contract/                # Contract tests
│   ├── integration/              # Integration tests
│   ├── unit/                     # Unit tests
│   └── performance/              # Performance tests
├── pyproject.toml                # Project configuration
├── README.md                     # This file
├── CONTRIBUTING.md               # Contribution guide
├── install.sh                    # Unix/Mac installer
└── install.ps1                   # Windows installer

Running Tests

# Run all tests
pytest

# Run specific test categories
pytest tests/unit/
pytest tests/contract/
pytest tests/integration/
pytest tests/performance/

# Run with coverage report
pytest --cov=workflowy_mcp --cov-report=html

# Run with verbose output
pytest -xvs

API Reference

Node Structure

{
    "id": "unique-node-id",
    "nm": "Node name",
    "no": "Node notes/description",
    "cp": false,  # Completed status
    "priority": 2,  # 0-3 (0=none, 1=low, 2=normal, 3=high)
    "ch": [],  # Child nodes
    "created": 1234567890,  # Unix timestamp
    "modified": 1234567890  # Unix timestamp
}

Error Handling

All tools return a consistent error format:

{
    "success": false,
    "error": "error_type",
    "message": "Human-readable error message",
    "context": {...}  // Additional error context
}

Performance

  • Automatic rate limiting prevents API throttling
  • Token bucket algorithm for smooth request distribution
  • Adaptive rate limiting based on API responses
  • Connection pooling for efficient HTTP requests

Contributing

See CONTRIBUTING.md for development setup and contribution guidelines.

License

MIT License - see LICENSE file for details.

Support

Acknowledgments

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选