WorkFlowy MCP Server
Integrates WorkFlowy's outline and task management capabilities with LLM applications, enabling hierarchical node creation, updates, completion tracking, and navigation through WorkFlowy's API.
README
WorkFlowy MCP Server
A Model Context Protocol (MCP) server that integrates WorkFlowy's outline and task management capabilities with LLM applications.
MCP Tools Available
| Tool | Description |
|---|---|
workflowy_create_node |
Create new nodes with name, notes, and layout mode |
workflowy_update_node |
Update existing node properties |
workflowy_get_node |
Retrieve a specific node by ID |
workflowy_list_nodes |
List child nodes of a specific parent |
workflowy_delete_node |
Delete a node and its children |
workflowy_complete_node |
Mark a node as completed |
workflowy_uncomplete_node |
Mark a node as uncompleted |
⚠️ Important Limitations
The WorkFlowy API has significant discovery limitations:
- ✅ CAN list root-level nodes (call
list_nodeswithout parent_id) - ✅ CAN navigate down the tree by listing children of discovered nodes
- ❌ CANNOT search for nodes by name or content
- ❌ CANNOT jump directly to deeply nested nodes
- ❌ CANNOT use node IDs from WorkFlowy web URLs (they use different IDs)
Practical Impact:
- You must navigate hierarchically from root to find existing nodes
- No text search means manually traversing the tree to find specific content
- Deep nodes require multiple list operations to reach
- The web interface IDs (
workflowy.com/#/abc123) are NOT compatible with API IDs
Quick Start
Prerequisites
- Python 3.10 or higher
- WorkFlowy account with API access
- Claude Desktop or other (local, since it's a python package) MCP-compatible client
Installation
Option 1: Install from PyPI (Recommended)
# Install the package
pip install workflowy-mcp
Option 2: Quick Setup Script
# Download and run the setup script
curl -sSL https://raw.githubusercontent.com/yourusername/workflowy-mcp/main/install.sh | bash
# Or on Windows:
# irm https://raw.githubusercontent.com/yourusername/workflowy-mcp/main/install.ps1 | iex
Option 3: Manual Installation from Source
# Clone the repository (if you want to contribute or modify)
git clone https://github.com/vladzima/workflowy-mcp.git
cd workflowy-mcp
pip install -e .
Configuration
-
Get your WorkFlowy API key:
- From WorkFlowy
-
Configure client: Edit your client configuration (Claude Desktop example):
- Mac:
~/Library/Application Support/Claude/claude_desktop_config.json - Windows:
%APPDATA%\Claude\claude_desktop_config.json
Add to the
mcpServerssection:{ "mcpServers": { "workflowy": { "command": "python3", "args": ["-m", "workflowy_mcp"], "env": { "WORKFLOWY_API_KEY": "your_actual_api_key_here", // Optional settings (uncomment to override defaults): // "WORKFLOWY_API_URL": "https://workflowy.com/api/v1", // "WORKFLOWY_REQUEST_TIMEOUT": "30", // "WORKFLOWY_MAX_RETRIES": "3", // "WORKFLOWY_RATE_LIMIT_REQUESTS": "60", // "WORKFLOWY_RATE_LIMIT_WINDOW": "60" } } } } - Mac:
-
Restart your client to load the MCP server
Usage
Once configured, you can use WorkFlowy tools with your agent:
Working with New Nodes
"Create a new WorkFlowy node called 'Project Tasks'"
# Returns: Created node with ID: abc-123-def
"Create a todo item 'Review PR' under parent node abc-123-def"
"Mark the node abc-123-def as completed"
"List all children of node abc-123-def"
Navigating Existing Nodes
Since there's no search, you must navigate from root:
"List my root-level WorkFlowy nodes"
# Returns: List of top-level nodes with their IDs
"List children of node abc-123-def"
# Navigate deeper into your outline
"Get details for node abc-123-def"
"Update node abc-123-def with new notes"
Note: The node IDs from the web interface URLs are NOT compatible with the API.
Development
Setup Development Environment
# Create virtual environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install in development mode
pip install -e ".[dev]"
# Run tests
pytest
# Run with coverage
pytest --cov=workflowy_mcp
# Run linting
ruff check src/
mypy src/
black src/ --check
Project Structure
workflowy-mcp/
├── src/
│ └── workflowy_mcp/
│ ├── __init__.py
│ ├── __main__.py # Entry point
│ ├── server.py # FastMCP server & tools
│ ├── config.py # Configuration
│ ├── transport.py # STDIO transport
│ ├── client/
│ │ ├── api_client.py # WorkFlowy API client
│ │ ├── rate_limit.py # Rate limiting
│ │ └── retry.py # Retry logic
│ ├── models/
│ │ ├── node.py # Node models
│ │ ├── requests.py # Request models
│ │ ├── config.py # Config models
│ │ └── errors.py # Error models
│ └── middleware/
│ ├── errors.py # Error handling
│ └── logging.py # Request logging
├── tests/
│ ├── contract/ # Contract tests
│ ├── integration/ # Integration tests
│ ├── unit/ # Unit tests
│ └── performance/ # Performance tests
├── pyproject.toml # Project configuration
├── README.md # This file
├── CONTRIBUTING.md # Contribution guide
├── install.sh # Unix/Mac installer
└── install.ps1 # Windows installer
Running Tests
# Run all tests
pytest
# Run specific test categories
pytest tests/unit/
pytest tests/contract/
pytest tests/integration/
pytest tests/performance/
# Run with coverage report
pytest --cov=workflowy_mcp --cov-report=html
# Run with verbose output
pytest -xvs
API Reference
Node Structure
{
"id": "unique-node-id",
"name": "Node name", # Text content
"note": "Node notes/description", # Optional notes
"layoutMode": "bullets", # Display mode: bullets, todo, h1, h2, h3
"completedAt": null, # Completion timestamp (null if not completed)
"children": [], # Child nodes array
"createdAt": 1234567890, # Unix timestamp
"modifiedAt": 1234567890 # Unix timestamp
}
Error Handling
All tools return a consistent error format:
{
"success": false,
"error": "error_type",
"message": "Human-readable error message",
"context": {...} // Additional error context
}
Performance
- Automatic rate limiting prevents API throttling
- Token bucket algorithm for smooth request distribution
- Adaptive rate limiting based on API responses
- Connection pooling for efficient HTTP requests
Contributing
See CONTRIBUTING.md for development setup and contribution guidelines.
License
MIT License - see LICENSE file for details.
Support
Acknowledgments
- Built with FastMCP framework
- Integrates with WorkFlowy API
- Compatible with Claude Desktop and other MCP clients
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。