wormhole-metrics-mcp

wormhole-metrics-mcp

An MCP server that analyzes cross-chain activity on the Wormhole protocol, providing insights into transaction volumes, top assets, source-destination chain pairs, and key performance indicators (KPIs).

Category
访问服务器

Tools

get_cross_chain_activity

Fetch cross-chain activity data from Wormholescan API and return as a pandas DataFrame. Args: timeSpan: Time span for data (7d, 30d, 90d, 1y, all-time). Default: 7d by: Render results by notional or tx count. Default: notional app: Comma-separated list of apps. Default: all apps Returns: String representation of a pandas DataFrame containing cross-chain activity data

get_money_flow

Fetch transaction count and volume data from Wormholescan API for a specific period. Args: timespan: Time span for data (1h, 1d, 1mo, 1y). Default: 1d from_date: From date in ISO 8601 format (e.g., 2024-01-01T15:04:05Z). Default: empty to_date: To date in ISO 8601 format (e.g., 2024-01-01T15:04:05Z). Default: empty appId: Application ID to filter results. Default: empty sourceChain: Source chain ID to filter results. Default: empty targetChain: Target chain ID to filter results. Default: empty Returns: String representation of a pandas DataFrame containing transaction count and volume data

get_top_assets_by_volume

Fetch top assets by volume from Wormholescan API. Args: timeSpan: Time span for data (7d, 15d, 30d). Default: 7d Returns: String representation of a pandas DataFrame containing top assets by volume

get_top_chain_pairs_by_num_transfers

Fetch top chain pairs by number of transfers from Wormholescan API. Args: timeSpan: Time span for data (7d, 15d, 30d). Default: 7d Returns: String representation of a pandas DataFrame containing top chain pairs by number of transfers

get_top_symbols_by_volume

Fetch top symbols by volume from Wormholescan API. Args: timeSpan: Time span for data (7d, 15d, 30d). Default: 7d Returns: String representation of a pandas DataFrame containing top symbols by volume

get_top100_corridors

Fetch top 100 token corridors by number of transactions from Wormholescan API. Args: timeSpan: Time span for data (2d, 7d). Default: 2d Returns: String representation of a pandas DataFrame containing top 100 corridors

get_kpi_list

Fetch a list of KPIs for Wormhole from Wormholescan API. Returns: String representation of a pandas DataFrame containing Wormhole KPIs

README

Wormhole Metrics MCP

An MCP server that analyzes cross-chain activity on the Wormhole protocol, providing insights into transaction volumes, top assets, source-destination chain pairs, and key performance indicators (KPIs).

GitHub License Python Version Status

Features

  • Comprehensive Tools: Includes tools for cross-chain activity, money flow, top assets, chain pairs, symbols, token corridors, and KPIs.
  • Markdown Output: Returns data as Markdown-formatted tables for clear presentation.

Installation

Prerequisites

  • Python 3.10 or higher
  • uv (recommended package manager)

Setup

  1. Clone the Repository

    git clone https://github.com/kukapay/wormhole-metrics-mcp.git
    cd wormhole-metrics-mcp
    
  2. Install Dependencies

    uv sync
    
  3. Installing to Claude Desktop:

    Install the server as a Claude Desktop application:

    uv run mcp install main.py --name "Wormhole Metrics"
    

    Configuration file as a reference:

    {
       "mcpServers": {
           "Wormhole Metrics": {
               "command": "uv",
               "args": [ "--directory", "/path/to/wormhole-metrics-mcp", "run", "main.py" ]
           }
       }
    }
    

    Replace /path/to/wormhole-metrics-mcp with your actual installation path.

Usage

The wormhole-metrics-mcp server exposes several tools via the MCP interface. Below is an overview of the tools and their usage.

Tools

  1. get_cross_chain_activity

    • Description: Fetches cross-chain activity data, returning a pivot table of volumes between source and destination chains.
    • Parameters:
      • timeSpan: 7d, 30d, 90d, 1y, all-time (default: 7d)
      • by: notional, tx count (default: notional)
      • app: Comma-separated list of apps (default: empty)
    • Example:
      • Prompt: "Show me the cross-chain activity for the last 7 days, measured by notional volume."
      • Output:
        | source_chain | Solana | Ethereum | Base       |
        |--------------|--------|---------|------------|
        | Mantle       | 23.545 |         |            |
        | Polygon      |        | 245951  | 747048     |
        
  2. get_money_flow

    • Description: Retrieves transaction count and volume data for a specific period.
    • Parameters:
      • timespan: 1h, 1d, 1mo, 1y (default: 1d)
      • from_date: ISO 8601 format (e.g., 2024-01-01T15:04:05Z, default: empty)
      • to_date: ISO 8601 format (default: empty)
      • appId: Application ID (default: empty)
      • sourceChain: Source chain ID (default: empty)
      • targetChain: Target chain ID (default: empty)
    • Example:
      • Prompt: "Get the transaction count and volume for Solana as the source chain over the last day."
      • Output:
        | from                 | to                   | source_chain | volume            | count |
        |----------------------|----------------------|--------------|-------------------|-------|
        | 2025-01-01T00:00:00Z | 2025-01-02T00:00:00Z | Solana       | 346085661921482   | 550   |
        | 2025-01-02T00:00:00Z | 2025-01-03T00:00:00Z | Solana       | 1915450117554795  | 747   |
        
  3. get_top_assets_by_volume

    • Description: Lists top assets by volume, including emitter and token chains.
    • Parameters:
      • timeSpan: 7d, 15d, 30d (default: 7d)
    • Example:
      • Prompt: "List the top assets by volume for the past 15 days."
      • Output:
        | emitter_chain | symbol | token_chain | token_address                            | volume         |
        |---------------|--------|-------------|------------------------------------------|----------------|
        | Solana        | WBTC   | Ethereum    | 0000000000000000000000002260fac5e5542a773aa44fbcfedf7c193bc2c599 | 25101807.78824 |
        | Ethereum      | RNDR   | Ethereum    | 0000000000000000000000006de037ef9ad2725eb40118bb1702ebb27e4aeb24 | 9829032.688    |
        
  4. get_top_chain_pairs_by_num_transfers

    • Description: Returns top chain pairs by number of transfers.
    • Parameters:
      • timeSpan: 7d, 15d, 30d (default: 7d)
    • Example:
      • Prompt: "Show the top chain pairs by number of transfers for the last 7 days."
      • Output:
        | source_chain | destination_chain | number_of_transfers |
        |--------------|-------------------|---------------------|
        | Optimism     | Solana            | 2849                |
        | Ethereum     | Solana            | 2466                |
        | Base         | Arbitrum          | 1993                |
        
  5. get_top_symbols_by_volume

    • Description: Fetches top symbols by volume and transaction count.
    • Parameters:
      • timeSpan: 7d, 15d, 30d (default: 7d)
    • Example:
      • Prompt: "What are the top symbols by volume over the last 30 days?"
      • Output:
        | symbol | volume          | txs |
        |--------|-----------------|-----|
        | WBTC   | 28434555.496489 | 133 |
        | RNDR   | 9829032.688     | 49  |
        | WETH   | 9662352.854166  | 60  |
        
  6. get_top100_corridors

    • Description: Lists top 100 token corridors by number of transactions.
    • Parameters:
      • timeSpan: 2d, 7d (default: 2d)
    • Example:
      • Prompt: "Get the top 100 token corridors by transactions for the last 7 days."
      • Output:
        | source_chain | target_chain | token_chain | token_address                            | txs |
        |--------------|--------------|-------------|------------------------------------------|-----|
        | Optimism     | Solana       | Optimism    | 000000000000000000000000ef4461891dfb3ac8572ccf7c794664a8dd927945 | 2777|
        | Base         | Arbitrum     | Base        | 000000000000000000000000271cdba25be9be2e024bc0a550012b2e5934420e | 1892|
        
  7. get_kpi_list

    • Description: Retrieves key performance indicators (KPIs) for the Wormhole protocol.
    • Parameters: None
    • Example:
      • Prompt: "Show me the key performance indicators for Wormhole."
      • Output:
        | 24h_messages | total_messages | total_tx_count | total_volume       | tvl         | 24h_volume   | 7d_volume    | 30d_volume    |
        |--------------|----------------|----------------|--------------------|-------------|--------------|--------------|---------------|
        | 192987       | 1111114235     | 6023755        | 60718344331.570806 | 2582546224  | 22688586.172 | 252786937.009| 1349155202.545|
        

License

This project is licensed under the MIT License. See the LICENSE file for details.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选