xcomet-mcp-server

xcomet-mcp-server

Translation quality evaluation MCP Server powered by xCOMET. Provides quality scoring (0-1), error detection with severity levels, and optimized batch processing for AI-assisted translation workflows.

Category
访问服务器

README

xCOMET MCP Server

npm version MCP License: MIT

⚠️ This is an unofficial community project, not affiliated with Unbabel.

Translation quality evaluation MCP Server powered by xCOMET (eXplainable COMET).

🎯 Overview

xCOMET MCP Server provides AI agents with the ability to evaluate machine translation quality. It integrates with the xCOMET model from Unbabel to provide:

  • Quality Scoring: Scores between 0-1 indicating translation quality
  • Error Detection: Identifies error spans with severity levels (minor/major/critical)
  • Batch Processing: Evaluate multiple translation pairs efficiently (optimized single model load)
  • GPU Support: Optional GPU acceleration for faster inference
graph LR
    A[AI Agent] --> B[Node.js MCP Server]
    B --> C[Python FastAPI Server]
    C --> D[xCOMET Model<br/>Persistent in Memory]
    D --> C
    C --> B
    B --> A

    style D fill:#9f9

🔧 Prerequisites

Python Environment

xCOMET requires Python with the following packages:

pip install "unbabel-comet>=2.2.0" fastapi uvicorn

Model Download

The first run will download the xCOMET model (~14GB for XL, ~42GB for XXL):

# Test model availability
python -c "from comet import download_model; download_model('Unbabel/XCOMET-XL')"

Node.js

  • Node.js >= 18.0.0
  • npm or yarn

📦 Installation

# Clone the repository
git clone https://github.com/shuji-bonji/xcomet-mcp-server.git
cd xcomet-mcp-server

# Install dependencies
npm install

# Build
npm run build

🚀 Usage

With Claude Desktop (npx)

Add to your Claude Desktop configuration (claude_desktop_config.json):

{
  "mcpServers": {
    "xcomet": {
      "command": "npx",
      "args": ["-y", "xcomet-mcp-server"]
    }
  }
}

With Claude Code

claude mcp add xcomet -- npx -y xcomet-mcp-server

Local Installation

If you prefer a local installation:

npm install -g xcomet-mcp-server

Then configure:

{
  "mcpServers": {
    "xcomet": {
      "command": "xcomet-mcp-server"
    }
  }
}

HTTP Mode (Remote Access)

TRANSPORT=http PORT=3000 npm start

Then connect to http://localhost:3000/mcp

🛠️ Available Tools

xcomet_evaluate

Evaluate translation quality for a single source-translation pair.

Parameters:

Name Type Required Description
source string Original source text
translation string Translated text to evaluate
reference string Reference translation
source_lang string Source language code (ISO 639-1)
target_lang string Target language code (ISO 639-1)
response_format "json" | "markdown" Output format (default: "json")
use_gpu boolean Use GPU for inference (default: false)

Example:

{
  "source": "The quick brown fox jumps over the lazy dog.",
  "translation": "素早い茶色のキツネが怠惰な犬を飛び越える。",
  "source_lang": "en",
  "target_lang": "ja",
  "use_gpu": true
}

Response:

{
  "score": 0.847,
  "errors": [],
  "summary": "Good quality (score: 0.847) with 0 error(s) detected."
}

xcomet_detect_errors

Focus on detecting and categorizing translation errors.

Parameters:

Name Type Required Description
source string Original source text
translation string Translated text to analyze
reference string Reference translation
min_severity "minor" | "major" | "critical" Minimum severity (default: "minor")
response_format "json" | "markdown" Output format
use_gpu boolean Use GPU for inference (default: false)

xcomet_batch_evaluate

Evaluate multiple translation pairs in a single request.

Performance Note: With the persistent server architecture (v0.3.0+), the model stays loaded in memory. Batch evaluation processes all pairs efficiently without reloading the model.

Parameters:

Name Type Required Description
pairs array Array of {source, translation, reference?} (max 500)
source_lang string Source language code
target_lang string Target language code
response_format "json" | "markdown" Output format
use_gpu boolean Use GPU for inference (default: false)
batch_size number Batch size 1-64 (default: 8). Larger = faster but uses more memory

Example:

{
  "pairs": [
    {"source": "Hello", "translation": "こんにちは"},
    {"source": "Goodbye", "translation": "さようなら"}
  ],
  "use_gpu": true,
  "batch_size": 16
}

🔗 Integration with Other MCP Servers

xCOMET MCP Server is designed to work alongside other MCP servers for complete translation workflows:

sequenceDiagram
    participant Agent as AI Agent
    participant DeepL as DeepL MCP Server
    participant xCOMET as xCOMET MCP Server
    
    Agent->>DeepL: Translate text
    DeepL-->>Agent: Translation result
    Agent->>xCOMET: Evaluate quality
    xCOMET-->>Agent: Score + Errors
    Agent->>Agent: Decide: Accept or retry?

Recommended Workflow

  1. Translate using DeepL MCP Server (official)
  2. Evaluate using xCOMET MCP Server
  3. Iterate if quality is below threshold

Example: DeepL + xCOMET Integration

Configure both servers in Claude Desktop:

{
  "mcpServers": {
    "deepl": {
      "command": "npx",
      "args": ["-y", "@anthropic/deepl-mcp-server"],
      "env": {
        "DEEPL_API_KEY": "your-api-key"
      }
    },
    "xcomet": {
      "command": "npx",
      "args": ["-y", "xcomet-mcp-server"]
    }
  }
}

Then ask Claude:

"Translate this text to Japanese using DeepL, then evaluate the translation quality with xCOMET. If the score is below 0.8, suggest improvements."

⚙️ Configuration

Environment Variables

Variable Default Description
TRANSPORT stdio Transport mode: stdio or http
PORT 3000 HTTP server port (when TRANSPORT=http)
XCOMET_MODEL Unbabel/XCOMET-XL xCOMET model to use
XCOMET_PYTHON_PATH (auto-detect) Python executable path (see below)
XCOMET_PRELOAD false Pre-load model at startup (v0.3.1+)
XCOMET_DEBUG false Enable verbose debug logging (v0.3.1+)

Model Selection

Choose the model based on your quality/performance needs:

Model Parameters Size Memory Reference Quality Use Case
Unbabel/XCOMET-XL 3.5B ~14GB ~8-10GB Optional ⭐⭐⭐⭐ Recommended for most use cases
Unbabel/XCOMET-XXL 10.7B ~42GB ~20GB Optional ⭐⭐⭐⭐⭐ Highest quality, requires more resources
Unbabel/wmt22-comet-da 580M ~2GB ~3GB Required ⭐⭐⭐ Lightweight, faster loading

Important: wmt22-comet-da requires a reference translation for evaluation. XCOMET models support referenceless evaluation.

Tip: If you experience memory issues or slow model loading, try Unbabel/wmt22-comet-da for faster performance with slightly lower accuracy (but remember to provide reference translations).

To use a different model, set the XCOMET_MODEL environment variable:

{
  "mcpServers": {
    "xcomet": {
      "command": "npx",
      "args": ["-y", "xcomet-mcp-server"],
      "env": {
        "XCOMET_MODEL": "Unbabel/XCOMET-XXL"
      }
    }
  }
}

Python Path Auto-Detection

The server automatically detects a Python environment with unbabel-comet installed:

  1. XCOMET_PYTHON_PATH environment variable (if set)
  2. pyenv versions (~/.pyenv/versions/*/bin/python3) - checks for comet module
  3. Homebrew Python (/opt/homebrew/bin/python3, /usr/local/bin/python3)
  4. Fallback: python3 command

This ensures the server works correctly even when the MCP host (e.g., Claude Desktop) uses a different Python than your terminal.

Example: Explicit Python path configuration

{
  "mcpServers": {
    "xcomet": {
      "command": "npx",
      "args": ["-y", "xcomet-mcp-server"],
      "env": {
        "XCOMET_PYTHON_PATH": "/Users/you/.pyenv/versions/3.11.0/bin/python3"
      }
    }
  }
}

⚡ Performance

Persistent Server Architecture (v0.3.0+)

The server uses a persistent Python FastAPI server that keeps the xCOMET model loaded in memory:

Request Time Notes
First request ~25-90s Model loading (varies by model size)
Subsequent requests ~500ms Model already loaded

This provides a 177x speedup for consecutive evaluations compared to reloading the model each time.

Eager Loading (v0.3.1+)

Enable XCOMET_PRELOAD=true to pre-load the model at server startup:

{
  "mcpServers": {
    "xcomet": {
      "command": "npx",
      "args": ["-y", "xcomet-mcp-server"],
      "env": {
        "XCOMET_PRELOAD": "true"
      }
    }
  }
}

With preload enabled, all requests are fast (~500ms), including the first one.

graph LR
    A[MCP Request] --> B[Node.js Server]
    B --> C[Python FastAPI Server]
    C --> D[xCOMET Model<br/>in Memory]
    D --> C
    C --> B
    B --> A

    style D fill:#9f9

Batch Processing Optimization

The xcomet_batch_evaluate tool processes all pairs with a single model load:

Pairs Estimated Time
10 ~30-40 sec
50 ~1-1.5 min
100 ~2 min

GPU vs CPU Performance

Mode 100 Pairs (Estimated)
CPU (batch_size=8) ~2 min
GPU (batch_size=16) ~20-30 sec

Note: GPU requires CUDA-compatible hardware and PyTorch with CUDA support. If GPU is not available, set use_gpu: false (default).

Best Practices

1. Let the persistent server do its job

With v0.3.0+, the model stays in memory. Multiple xcomet_evaluate calls are now efficient:

✅ Fast: First call loads model, subsequent calls reuse it
   xcomet_evaluate(pair1)  # ~90s (model loads)
   xcomet_evaluate(pair2)  # ~500ms (model cached)
   xcomet_evaluate(pair3)  # ~500ms (model cached)

2. For many pairs, use batch evaluation

✅ Even faster: Batch all pairs in one call
   xcomet_batch_evaluate(allPairs)  # Optimal throughput

3. Memory considerations

  • XCOMET-XL requires ~8-10GB RAM
  • For large batches (500 pairs), ensure sufficient memory
  • If memory is limited, split into smaller batches (100-200 pairs)

Auto-Restart (v0.3.1+)

The server automatically recovers from failures:

  • Monitors health every 30 seconds
  • Restarts after 3 consecutive health check failures
  • Up to 3 restart attempts before giving up

📊 Quality Score Interpretation

Score Range Quality Recommendation
0.9 - 1.0 Excellent Ready for use
0.7 - 0.9 Good Minor review recommended
0.5 - 0.7 Fair Post-editing needed
0.0 - 0.5 Poor Re-translation recommended

🔍 Troubleshooting

Common Issues

"No module named 'comet'"

Cause: Python environment without unbabel-comet installed.

Solution:

# Check which Python is being used
python3 -c "import sys; print(sys.executable)"

# Install all required packages
pip install "unbabel-comet>=2.2.0" fastapi uvicorn

# Or specify Python path explicitly
export XCOMET_PYTHON_PATH=/path/to/python3

Model download fails or times out

Cause: Large model files (~14GB for XL) require stable internet connection.

Solution:

# Pre-download the model manually
python -c "from comet import download_model; download_model('Unbabel/XCOMET-XL')"

GPU not detected

Cause: PyTorch not installed with CUDA support.

Solution:

# Check CUDA availability
python -c "import torch; print(torch.cuda.is_available())"

# If False, reinstall PyTorch with CUDA
pip install torch --index-url https://download.pytorch.org/whl/cu118

Slow performance on Mac (MPS)

Cause: Mac MPS (Metal Performance Shaders) has compatibility issues with some operations.

Solution: The server automatically uses num_workers=1 for Mac MPS compatibility. For best performance on Mac, use CPU mode (use_gpu: false).

High memory usage or crashes

Cause: XCOMET-XL requires ~8-10GB RAM.

Solutions:

  1. Use the persistent server (v0.3.0+): Model loads once and stays in memory, avoiding repeated memory spikes
  2. Use a lighter model: Set XCOMET_MODEL=Unbabel/wmt22-comet-da for lower memory usage (~3GB)
  3. Reduce batch size: For large batches, process in smaller chunks (100-200 pairs)
  4. Close other applications: Free up RAM before running large evaluations
# Check available memory
free -h  # Linux
vm_stat | head -5  # macOS

VS Code or IDE crashes during evaluation

Cause: High memory usage from the xCOMET model (~8-10GB for XL).

Solution:

  • With v0.3.0+, the model loads once and stays in memory (no repeated loading)
  • If memory is still an issue, use a lighter model: XCOMET_MODEL=Unbabel/wmt22-comet-da
  • Close other memory-intensive applications before evaluation

Getting Help

If you encounter issues:

  1. Check the GitHub Issues
  2. Enable debug logging by checking Claude Desktop's Developer Mode logs
  3. Open a new issue with:
    • Your OS and Python version
    • The error message
    • Your configuration (without sensitive data)

🧪 Development

# Install dependencies
npm install

# Build TypeScript
npm run build

# Watch mode
npm run dev

# Test with MCP Inspector
npm run inspect

📋 Changelog

See CHANGELOG.md for version history and updates.

📝 License

MIT License - see LICENSE for details.

🙏 Acknowledgments

📚 References

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选