XDS110 MCP Server

XDS110 MCP Server

Enables Large Language Models to act as co-debuggers for Texas Instruments embedded systems by providing real-time variable monitoring, memory manipulation, and motor control analysis through OpenOCD proxy architecture. Supports debugging TI microcontrollers with XDS110 debug probes while working alongside Code Composer Studio.

Category
访问服务器

README

XDS110 MCP Server

LLM Co-Debugger for TI Embedded Systems

License: MIT Python 3.8+ MCP Protocol

An MCP (Model Context Protocol) server that enables Large Language Models to act as co-debuggers for Texas Instruments embedded systems. Provides real-time variable monitoring, memory manipulation, and analysis through OpenOCD proxy architecture.


Functionality

This MCP server enables LLMs to:

  • Monitor 50+ motor control variables simultaneously with change detection
  • Analyze root causes of motor humming, overcurrent faults, and calibration failures
  • Write to debug structures and motor control parameters via direct memory access
  • Work alongside Code Composer Studio through session handoff
  • Provide domain expertise in motor control, FOC principles, and TI peripherals

Verified Hardware Support

  • TI XDS110 Debug Probe (USB connection)
  • TMS320F280039C microcontroller (F28xx series)
  • Custom boards with XDS110 debugger integration
  • PMSM motor control via DRV8323RH driver
  • Direct memory access to union structures

Architecture Overview

graph TB
    A[LLM Client<br/>Claude/GPT] <--> B[XDS110 MCP Server<br/>Python]
    B <--> C[OpenOCD Proxy<br/>Multi-Client GDB]
    C <--> D[XDS110 Debug Probe<br/>USB Hardware]
    D <--> E[TMS320F280039C<br/>Target MCU]
    
    B <--> F[Domain Knowledge<br/>Motor Control/FOC]
    
    G[Code Composer Studio] -.-> C
    
    subgraph "MCP Tools"
        H[read_variables]
        I[monitor_variables]
        J[write_memory]
        K[set_breakpoint]
        L[analyze_motor_state]
    end
    
    B --> H
    B --> I
    B --> J
    B --> K  
    B --> L

OpenOCD Multi-Client Proxy

Traditional debugging allows only one tool to connect to hardware. This solution uses OpenOCD's multi-client capabilities:

  1. OpenOCD connects to XDS110 using native driver support
  2. Multiple GDB clients can connect to OpenOCD simultaneously
  3. MCP server acts as intelligent GDB client for LLM interaction
  4. Code Composer Studio can still connect when needed (via session handoff)

Quick Start

Prerequisites

  • Python 3.8+
  • OpenOCD with XDS110 driver support
  • XDS110 debug probe with firmware 2.3.0.11+
  • TI target hardware (F280039C verified)

Installation

git clone https://github.com/yourusername/XDS110_MCP_server.git
cd XDS110_MCP_server
pip install -r requirements.txt

Hardware Verification

# Check XDS110 detection
lsusb | grep "0451:bef3"
# Should show: Bus XXX Device XXX: ID 0451:bef3 Texas Instruments, Inc.

# Test OpenOCD connection
openocd -f configs/xds110_f28039.cfg

Start MCP Server

# Start the MCP server
python -m xds110_mcp_server --config configs/f28039_config.json

# In another terminal, test with MCP Inspector
npx @modelcontextprotocol/inspector python -m xds110_mcp_server

MCP Tools Available to LLMs

Tool Description Parameters Example Use
read_variables Read current values of motor control variables variable_list, format Monitor motor state, position, currents
monitor_variables Continuous monitoring with change detection variables, duration, threshold Detect anomalies during motor operation
write_memory Direct memory writes to structures address, value, size Modify debug_bypass parameters
set_breakpoint Conditional breakpoints with custom logic address, condition, action Stop when motor state changes
analyze_motor_state AI-powered motor control analysis focus_area Diagnose humming, faults, tuning issues
calibrate_motor Trigger calibration sequences calibration_type Run commands 64-67 for motor setup

Example LLM Interactions

Human: "My PMSM motor hums instead of spinning during bypass alignment"

LLM: I'll help diagnose this motor humming issue. Let me start by monitoring 
the key variables during bypass alignment.

→ monitor_variables(['motorVars_M1.motorState', 'debug_bypass.bypass_alignment_called', 'motorVars_M1.Idq_out_A.value[0]'], duration=30)

I can see the bypass alignment is being called, but the D-axis current 
(Idq_out_A[0]) remains at 0. This suggests missing current control 
initialization. Let me check the debug_bypass structure...

→ read_variables(['debug_bypass.debug_enabled', 'debug_bypass.command.cmd'])

The debug_bypass.debug_enabled is 0. Let me enable it and set up proper 
current control initialization:

→ write_memory(0x0000d3c0, 1, 1)  # Enable debug bypass
→ write_memory(0x0000d3c5, 100, 2)  # Set 0.1A current limit

Now let's monitor if the motor behavior improves...

Project Structure

XDS110_MCP_server/
├── README.md                          # This file
├── PRD.md                              # Product Requirements Document
├── LICENSE                             # MIT License
├── requirements.txt                    # Python dependencies
├── pyproject.toml                      # Python project configuration
│
├── xds110_mcp_server/                  # Main MCP server package
│   ├── __init__.py                     # Package initialization
│   ├── server.py                       # Main MCP server implementation
│   ├── tools/                          # MCP tool implementations
│   │   ├── __init__.py
│   │   ├── variable_monitor.py         # Variable reading/monitoring tools
│   │   ├── memory_tools.py             # Memory read/write tools
│   │   ├── breakpoint_tools.py         # Breakpoint management tools
│   │   └── analysis_tools.py           # Motor analysis and diagnostics
│   ├── gdb_interface/                  # GDB protocol communication
│   │   ├── __init__.py
│   │   ├── gdb_client.py              # GDB protocol implementation
│   │   └── openocd_manager.py         # OpenOCD process management
│   ├── knowledge/                      # Domain knowledge database
│   │   ├── __init__.py
│   │   ├── motor_control.py           # Motor control expertise
│   │   ├── ti_peripherals.py          # TI peripheral knowledge
│   │   └── fault_patterns.py          # Common failure pattern recognition
│   └── utils/                          # Utility functions
│       ├── __init__.py
│       ├── config.py                  # Configuration management
│       ├── logging.py                 # Logging setup
│       └── hardware_detect.py         # Hardware detection utilities
│
├── configs/                            # Configuration files
│   ├── xds110_f28039.cfg             # OpenOCD configuration for F280039C
│   ├── f28039_config.json            # Default server configuration
│   └── motor_variables.json          # Motor control variable definitions
│
├── legacy_ti_debugger/                 # Copied from working implementation
│   ├── framework/
│   │   └── ti_dss_adapter.py          # Proven TI DSS connection logic
│   ├── working_memory_motor_control.py # Working motor control script
│   ├── motor_control.py               # Clean entry point
│   └── js_scripts/                    # JavaScript DSS debugging scripts
│       ├── connect_target_v2.js
│       ├── read_motor_vars_v1.js
│       └── monitor_alignment.js
│
├── tests/                              # Test suite
│   ├── __init__.py
│   ├── test_mcp_server.py             # MCP server tests
│   ├── test_gdb_interface.py          # GDB interface tests
│   ├── test_hardware_integration.py   # Hardware integration tests
│   └── fixtures/                      # Test fixtures and mock data
│
├── docs/                               # Documentation
│   ├── installation.md                # Installation guide
│   ├── configuration.md               # Configuration documentation
│   ├── api_reference.md               # MCP API reference
│   ├── troubleshooting.md             # Common issues and solutions
│   └── examples/                      # Usage examples
│       ├── basic_debugging.md
│       ├── motor_tuning.md
│       └── advanced_analysis.md
│
└── scripts/                            # Utility scripts
    ├── setup_openocd.sh              # OpenOCD installation helper
    ├── test_hardware.py              # Hardware connection test
    └── validate_installation.py       # Installation validation

Development Status

Completed (From Legacy ti_debugger)

  • [x] Hardware Connection: XDS110 + F280039C proven working
  • [x] Memory Access: Direct read/write to debug_bypass structure (0x0000d3c0)
  • [x] Variable Reading: Comprehensive motor control variable access
  • [x] Motor Control: PMSM motor control with DRV8323RH driver
  • [x] Calibration: Automated calibration sequences (commands 64-67)
  • [x] Domain Knowledge: Motor control, FOC principles, fault patterns

In Progress

  • [ ] MCP Server Implementation: Converting ti_debugger logic to MCP framework
  • [ ] OpenOCD Integration: Multi-client GDB proxy setup
  • [ ] Tool Development: MCP tools for variable monitoring, memory access
  • [ ] LLM Integration: Domain knowledge integration for intelligent analysis

Planned

  • [ ] Session Management: CCS handoff and conflict resolution
  • [ ] Advanced Analysis: Pattern recognition and fault diagnosis
  • [ ] Performance Optimization: Sub-100ms variable read latency
  • [ ] Documentation: Comprehensive guides and API reference
  • [ ] Testing: Hardware integration and reliability tests

Use Cases

1. Motor Humming Diagnosis

Problem: PMSM motor hums during bypass alignment instead of spinning smoothly. Solution: LLM analyzes bypass alignment variables, identifies missing current control initialization, and suggests memory writes to fix the issue.

2. Real-Time Debugging Assistant

Problem: Complex motor control sequences with dozens of variables to monitor. Solution: LLM continuously monitors variables, detects anomalies, and provides contextual alerts with domain expertise.

3. Interactive Parameter Tuning

Problem: PID controller tuning requires iterative testing and analysis. Solution: LLM suggests parameter changes based on motor behavior description, applies changes via memory writes, and monitors results.

4. Automated Fault Analysis

Problem: Intermittent overcurrent faults that are difficult to debug manually. Solution: LLM sets intelligent breakpoints, monitors fault conditions, and analyzes patterns to identify root causes.


Technical Specifications

Performance Requirements

  • Variable Read Latency: < 100ms per variable
  • Monitoring Frequency: Up to 10Hz for critical variables
  • Memory Footprint: < 50MB RAM usage
  • Startup Time: < 5 seconds to ready state
  • Connection Recovery: Auto-reconnect within 1 second

Hardware Requirements

  • Debug Probe: XDS110 with firmware 2.3.0.11+
  • Target MCU: TMS320F280039C (F28xx series support planned)
  • Connection: USB 2.0+ for XDS110 probe
  • Host OS: Linux (tested), Windows/macOS (planned)

Software Requirements

  • Python: 3.8+ with asyncio support
  • OpenOCD: Latest version with XDS110 driver
  • MCP SDK: Python Model Context Protocol SDK
  • Optional: Code Composer Studio for traditional debugging

Contributing

We welcome contributions to this embedded systems debugging MCP server:

High-Priority Areas

  • Additional TI MCU support (F28xx series, C2000 family)
  • Other debug probe support (J-Link, ST-Link)
  • Windows/macOS compatibility
  • Advanced motor control algorithms
  • Performance optimizations

Getting Started

  1. Fork the repository
  2. Set up development environment: pip install -r requirements-dev.txt
  3. Run tests: pytest tests/
  4. Submit pull request with comprehensive testing

Development Guidelines

  • Follow PEP 8 style guidelines
  • Add tests for new functionality
  • Update documentation for user-facing changes
  • Verify hardware compatibility before submitting

Resources & References

MCP Protocol

OpenOCD & Hardware

TI Documentation


License

MIT License - see LICENSE file for details.


Acknowledgments

  • Texas Instruments: For XDS110 debug probe and comprehensive documentation
  • OpenOCD Project: For multi-client debugging architecture
  • Model Context Protocol Team: For the MCP framework enabling LLM tool integration
  • Embedded Community: For sharing knowledge and debugging techniques

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选