Xplainable MCP Server
Enables secure access to Xplainable AI platform capabilities for managing machine learning models, deployments, and preprocessors. Supports both read operations (listing models, deployments) and write operations (deploying models, generating reports) with proper authentication and rate limiting.
README
Xplainable MCP Server
A Model Context Protocol (MCP) server that provides secure access to Xplainable AI platform capabilities through standardized tools and resources.
Features
- Secure Authentication: Token-based authentication with environment variable management
- Read Operations: Access models, deployments, preprocessors, and collections
- Write Operations: Deploy models, manage deployments, generate reports (with proper authorization)
- Type Safety: Full Pydantic model validation for all inputs/outputs
- Rate Limiting: Built-in rate limiting and request validation
- Audit Logging: Comprehensive logging of all operations
Installation
pip install xplainable-mcp-server
CLI Commands
The server includes a CLI for management and documentation:
# List all available tools
xplainable-mcp-cli list-tools
xplainable-mcp-cli list-tools --format json
xplainable-mcp-cli list-tools --format markdown
# Validate configuration
xplainable-mcp-cli validate-config
xplainable-mcp-cli validate-config --env-file /path/to/.env
# Test API connection
xplainable-mcp-cli test-connection
# Generate tool documentation
xplainable-mcp-cli generate-docs
xplainable-mcp-cli generate-docs --output TOOLS.md
Quick Start
For Production Users
If you just want to use this MCP server with Claude Code:
- Get your Xplainable API key from https://platform.xplainable.io
- Add the MCP configuration (see Claude Code Configuration above)
- That's it! Claude Code will handle installation automatically
For Developers
1. Set up environment variables
Create a .env file with your Xplainable credentials:
XPLAINABLE_API_KEY=your-api-key-here
XPLAINABLE_HOST=https://platform.xplainable.io
XPLAINABLE_ORG_ID=your-org-id # Optional
XPLAINABLE_TEAM_ID=your-team-id # Optional
2. Run the server
# For development (localhost only)
xplainable-mcp
# For production (with TLS/proxy)
xplainable-mcp --host 0.0.0.0 --port 8000
3. Connect with an MCP client
Claude Code Configuration
Option 1: Install from GitHub (Recommended)
{
"mcpServers": {
"xplainable": {
"command": "uvx",
"args": ["--from", "git+https://github.com/yourusername/xplainable-mcp-server.git", "xplainable-mcp-server"],
"env": {
"XPLAINABLE_API_KEY": "your-api-key-here",
"XPLAINABLE_HOST": "https://platform.xplainable.io"
}
}
}
}
Option 2: Clone and run from source
{
"mcpServers": {
"xplainable": {
"command": "python",
"args": ["-m", "xplainable_mcp.server"],
"cwd": "/path/to/cloned/xplainable-mcp-server",
"env": {
"XPLAINABLE_API_KEY": "your-api-key-here",
"XPLAINABLE_HOST": "https://platform.xplainable.io"
}
}
}
}
Option 3: Development with local backend
{
"mcpServers": {
"xplainable": {
"command": "python",
"args": ["-m", "xplainable_mcp.server"],
"cwd": "/path/to/xplainable-mcp-server",
"env": {
"XPLAINABLE_API_KEY": "your-development-key",
"XPLAINABLE_HOST": "http://localhost:8000",
"ENABLE_WRITE_TOOLS": "true"
}
}
}
}
Claude Desktop Configuration
Add the configuration to your Claude Desktop MCP settings file:
File Locations:
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json - Windows:
%APPDATA%\Claude\claude_desktop_config.json - Linux:
~/.config/Claude/claude_desktop_config.json
Option 1: Install from GitHub (Recommended)
{
"mcpServers": {
"xplainable": {
"command": "uvx",
"args": ["--from", "git+https://github.com/yourusername/xplainable-mcp-server.git", "xplainable-mcp-server"],
"env": {
"XPLAINABLE_API_KEY": "your-api-key-here",
"XPLAINABLE_HOST": "https://platform.xplainable.io"
}
}
}
}
Option 2: Development setup (from source)
{
"mcpServers": {
"xplainable": {
"command": "python",
"args": ["-m", "xplainable_mcp.server"],
"cwd": "/path/to/xplainable-mcp-server",
"env": {
"XPLAINABLE_API_KEY": "your-api-key",
"XPLAINABLE_HOST": "https://platform.xplainable.io",
"ENABLE_WRITE_TOOLS": "true"
}
}
}
}
Option 3: Using conda environment
{
"mcpServers": {
"xplainable": {
"command": "conda",
"args": ["run", "-n", "xplainable-mcp", "python", "-m", "xplainable_mcp.server"],
"cwd": "/path/to/xplainable-mcp-server",
"env": {
"XPLAINABLE_API_KEY": "your-api-key",
"XPLAINABLE_HOST": "https://platform.xplainable.io",
"ENABLE_WRITE_TOOLS": "true"
}
}
}
}
Development Setup
For Local Development with Claude Code
- Set up the environment:
# Create conda environment
conda create -n xplainable-mcp python=3.9
conda activate xplainable-mcp
# Install dependencies
pip install -e .
pip install -e /path/to/xplainable-client
- Configure environment variables:
# .env file for development
XPLAINABLE_API_KEY=your-development-api-key
XPLAINABLE_HOST=http://localhost:8000
ENABLE_WRITE_TOOLS=true
RATE_LIMIT_ENABLED=false
- Test the setup:
# Test connection to local backend
python -c "
import sys
sys.path.append('.')
from xplainable_mcp.server import get_client
client = get_client()
print('Connection successful!')
print(f'Connected to: {client.connection_info}')
"
Example Deployment Workflow
Here's a complete example of deploying a model and testing inference:
# 1. List available models
python -c "
from xplainable_mcp.server import get_client
client = get_client()
models = client.models.list_team_models()
for model in models[:3]: # Show first 3
print(f'Model: {model.display_name} (ID: {model.model_id})')
print(f' Version: {model.active_version}')
print(f' Deployed: {model.deployed}')
"
# 2. Deploy a model version (replace with actual version_id)
python -c "
from xplainable_mcp.server import get_client
client = get_client()
deployment = client.deployments.deploy('your-version-id-here')
print(f'Deployment ID: {deployment.deployment_id}')
"
# 3. Generate deployment key
python -c "
from xplainable_mcp.server import get_client
client = get_client()
key = client.deployments.generate_deploy_key('deployment-id', 'Test Key')
print(f'Deploy Key: {key}')
"
# 4. Test inference (requires active deployment)
curl -X POST https://inference.xplainable.io/v1/predict \
-H 'Content-Type: application/json' \
-d '{
"deploy_key": "your-deploy-key",
"data": {"feature1": "value1", "feature2": 123}
}'
Available Tools
Discovery Tools
list_tools()- List all available MCP tools with descriptions and parameters
Read-Only Tools
get_connection_info()- Get connection and diagnostic informationlist_team_models(team_id?)- List all models for a teamget_model(model_id)- Get detailed model informationlist_model_versions(model_id)- List all versions of a modellist_deployments(team_id?)- List all deploymentslist_preprocessors(team_id?)- List all preprocessorsget_preprocessor(preprocessor_id)- Get preprocessor detailsget_collection_scenarios(collection_id)- List scenarios in a collectionget_active_team_deploy_keys_count(team_id?)- Get count of active deploy keysmisc_get_version_info()- Get version information
Write Tools (Restricted)
Note: Write tools require ENABLE_WRITE_TOOLS=true in environment
activate_deployment(deployment_id)- Activate a deploymentdeactivate_deployment(deployment_id)- Deactivate a deploymentgenerate_deploy_key(deployment_id, description?, days_until_expiry?)- Generate deployment keyget_deployment_payload(deployment_id)- Get sample payload data for deploymentgpt_generate_report(model_id, version_id, ...)- Generate GPT report
Security
Authentication
The server requires authentication via:
- Bearer tokens for MCP client connections
- API keys for Xplainable backend (from environment only)
Transport Security
- Default binding to localhost only
- TLS termination at reverse proxy recommended
- Origin/Host header validation
Rate Limiting
Per-tool and per-principal rate limits are enforced to prevent abuse.
Synchronization with xplainable-client
When the xplainable-client library is updated, use these tools to keep the MCP server synchronized:
Quick Sync Check
# Check if sync is needed
python scripts/sync_workflow.py
# Generate detailed report
python scripts/sync_workflow.py --markdown sync_report.md
# Check current tool coverage
xplainable-mcp-cli list-tools --format json
Comprehensive Sync Process
- Read the sync workflow guide:
SYNC_WORKFLOW.md - Review common scenarios:
examples/sync_scenarios.md - Run automated analysis:
python scripts/sync_workflow.py - Implement changes following the patterns in
server.py - Test thoroughly and update documentation
Development
Setup
# Clone the repository
git clone https://github.com/xplainable/xplainable-mcp-server
cd xplainable-mcp-server
# Install development dependencies
pip install -e ".[dev]"
# Run tests
pytest
# Type checking
mypy xplainable_mcp
# Linting
ruff check .
black --check .
Testing
# Run all tests
pytest
# Run with coverage
pytest --cov=xplainable_mcp
# Run specific tests
pytest tests/test_tools.py
Deployment
Docker
# Build the image
docker build -t xplainable-mcp-server .
# Run with environment file
docker run --env-file .env -p 8000:8000 xplainable-mcp-server
Compatibility Matrix
| MCP Server Version | Xplainable Client | Backend API |
|---|---|---|
| 0.1.x | >=1.0.0 | v1 |
Contributing
See CONTRIBUTING.md for guidelines.
Security
For security issues, please see SECURITY.md.
License
MIT License - see LICENSE for details.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。