Xray MCP Server
Enables AI assistants to interact with Xray Test Management for both Cloud and Server deployments. Supports test execution, importing results from multiple formats (JUnit, Cucumber, Robot Framework, TestNG), and managing test plans and executions.
README
Xray MCP Server
A Model Context Protocol (MCP) server for integrating with Xray Test Management. This server enables AI assistants like Claude to interact with Xray, supporting test execution and importing test results from various formats.
Features
- Dual Deployment Support: Works with both Xray Cloud and Xray Server/Data Center
- Test Execution: Create and execute test runs directly from AI conversations
- Multiple Import Formats: Import test results from JUnit, Cucumber, Xray JSON, Robot Framework, and TestNG
- Query & Management: Query test executions, retrieve test information, and manage test plans
- Type-Safe: Built with TypeScript for robust type checking and IDE support
Installation
# Clone the repository
git clone <repository-url>
cd xray-mcp-server
# Install dependencies
npm install
# Build the project
npm run build
Configuration
Environment Variables
Copy .env.example to .env and configure based on your Xray deployment:
For Xray Cloud
XRAY_DEPLOYMENT=cloud
XRAY_CLOUD_CLIENT_ID=your_client_id
XRAY_CLOUD_CLIENT_SECRET=your_client_secret
Get your API credentials from: https://xray.cloud.getxray.app/api-keys
For Xray Server/Data Center
Using Personal Access Token (Recommended)
XRAY_DEPLOYMENT=server
XRAY_JIRA_BASE_URL=https://your-jira-instance.com
XRAY_AUTH_TYPE=token
XRAY_TOKEN=your_personal_access_token
Using Basic Authentication
XRAY_DEPLOYMENT=server
XRAY_JIRA_BASE_URL=https://your-jira-instance.com
XRAY_AUTH_TYPE=basic
XRAY_USERNAME=your_username
XRAY_PASSWORD=your_password
MCP Client Configuration
Add this server to your MCP client configuration (e.g., Claude Desktop):
MacOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
{
"mcpServers": {
"xray": {
"command": "node",
"args": ["/absolute/path/to/xray-mcp-server/dist/index.js"],
"env": {
"XRAY_DEPLOYMENT": "cloud",
"XRAY_CLOUD_CLIENT_ID": "your_client_id",
"XRAY_CLOUD_CLIENT_SECRET": "your_client_secret"
}
}
}
}
Or if you want to use the .env file, ensure it's in the working directory:
{
"mcpServers": {
"xray": {
"command": "node",
"args": ["/absolute/path/to/xray-mcp-server/dist/index.js"],
"cwd": "/absolute/path/to/xray-mcp-server"
}
}
}
Available Tools
1. import_test_results
Import automated test execution results from various formats.
Supported Formats:
junit- JUnit XML formatcucumber- Cucumber JSON formatxray-json- Xray native JSON formatrobot- Robot Framework XML formattestng- TestNG XML format
Example:
Import JUnit test results for project DEMO with test plan DEMO-100:
- Format: junit
- Project: DEMO
- Test Plan: DEMO-100
- Results: <xml content here>
2. execute_tests
Create and execute a test run in Xray for specified test cases.
Example:
Execute tests DEMO-1, DEMO-2, and DEMO-3 with:
- Test Plan: DEMO-100
- Environments: Chrome, Production
- Summary: Regression Test Run - Sprint 5
3. query_test_executions
Query and filter test executions in Xray.
Example:
Find all test executions in project DEMO:
- Created after: 2024-01-01
- Status: FAIL
- Limit: 20
4. get_test_info
Retrieve detailed information about a specific test case.
Example:
Get information for test case DEMO-123
5. create_test_execution
Create a new test execution container in Xray.
Example:
Create a test execution in project DEMO:
- Summary: API Regression Test - Release 2.0
- Description: Testing all API endpoints for release 2.0
- Test Plan: DEMO-100
- Environments: QA, Staging
6. update_test_execution
Update status and details of a test within an execution.
Example:
Update test DEMO-5 in execution DEMO-200:
- Status: PASS
- Comment: All assertions passed successfully
7. get_test_plans
List test plans in a project.
Example:
Get test plans for project DEMO, limit 10
8. associate_tests_to_execution
Add test cases to an existing test execution.
Example:
Associate tests DEMO-10, DEMO-11, DEMO-12 to execution DEMO-200
Usage Examples
Importing JUnit Results
<!-- example-junit.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<testsuite name="Test Suite" tests="2" failures="1" errors="0" time="5.123">
<testcase classname="com.example.LoginTest" name="testSuccessfulLogin" time="2.5">
</testcase>
<testcase classname="com.example.LoginTest" name="testInvalidPassword" time="2.623">
<failure message="Expected error message not displayed">
AssertionError: Expected error message not displayed
</failure>
</testcase>
</testsuite>
Then in your AI conversation:
Import these JUnit test results to project DEMO:
- Format: junit
- Project: DEMO
- Test Plan: DEMO-100
- Results: <paste XML content>
Executing Tests
Execute the following tests:
- DEMO-1: Login with valid credentials
- DEMO-2: Login with invalid credentials
- DEMO-3: Password reset flow
Associate with test plan DEMO-100 and run in Chrome environment
Querying Test Executions
Find all failed test executions in project DEMO from the last week
API Coverage
| Feature | Xray Cloud | Xray Server/DC |
|---|---|---|
| Import JUnit | ✅ | ✅ |
| Import Cucumber | ✅ | ✅ |
| Import Xray JSON | ✅ | ✅ |
| Import Robot | ✅ | ✅ |
| Execute Tests | ✅ | ✅ |
| Query Executions | ✅ (GraphQL) | ✅ (JQL) |
| Get Test Info | ✅ | ✅ |
| Create Execution | ✅ | ✅ |
| Update Test Run | ✅ | ✅ |
| Get Test Plans | ✅ | ✅ |
| Associate Tests | ✅ | ✅ |
Architecture
The server uses a multi-client architecture:
┌─────────────────┐
│ MCP Server │
└────────┬────────┘
│
├──────────────┐
│ │
┌────▼────┐ ┌────▼────┐
│ Cloud │ │ Server │
│ Client │ │ Client │
└────┬────┘ └────┬────┘
│ │
│ │
Xray Cloud Xray Server/DC
- XrayClient Interface: Common interface for both clients
- CloudClient: Implements Xray Cloud API v2 with GraphQL
- ServerClient: Implements Xray Server/DC REST API v1
- Factory Pattern: Automatically creates the correct client based on configuration
Development
Running in Development Mode
npm run dev
Building
npm run build
Project Structure
xray-mcp-server/
├── src/
│ ├── index.ts # Entry point
│ ├── server.ts # MCP server setup
│ ├── config/ # Configuration management
│ ├── xray/ # Xray API clients
│ │ ├── client.ts # Client interface
│ │ ├── cloud-client.ts # Cloud implementation
│ │ ├── server-client.ts # Server implementation
│ │ ├── factory.ts # Client factory
│ │ └── types.ts # Type definitions
│ ├── tools/ # MCP tool definitions
│ └── utils/ # Utilities
├── dist/ # Compiled output
├── package.json
├── tsconfig.json
└── .env # Configuration (not in git)
Troubleshooting
Authentication Errors
Error: Authentication failed. Please check your credentials.
Solution:
- For Cloud: Verify your Client ID and Client Secret at https://xray.cloud.getxray.app/api-keys
- For Server: Verify your token or username/password. Ensure the user has proper permissions.
Connection Errors
Error: Network error: Unable to reach Xray API
Solution:
- Check your
XRAY_JIRA_BASE_URLis correct (for Server deployment) - Verify network connectivity to Xray
- Check if a proxy or firewall is blocking the connection
Invalid Test Key Format
Error: Invalid test key format
Solution: Test keys must follow the format PROJECT-123 where PROJECT is the project key and 123 is the issue number.
Import Failures
Error: Import fails with validation errors
Solution:
- Verify the XML/JSON format is correct for the specified format type
- Check that the project key exists in Jira
- Ensure test keys referenced in results exist (or use
autoCreateTests: truefor Cloud)
Missing Dependencies
Error: TypeScript errors or missing modules
Solution: Run npm install to ensure all dependencies are installed.
Contributing
Contributions are welcome! Please ensure:
- Code follows the existing style
- TypeScript types are properly defined
- Error handling is comprehensive
- Documentation is updated for new features
License
MIT
Resources
- Xray Cloud REST API Documentation
- Xray Server REST API Documentation
- Model Context Protocol Documentation
- Xray Import Formats
Support
For issues and questions:
- Check the troubleshooting section above
- Review Xray API documentation
- Open an issue in the repository
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。