YggTorrent MCP Server

YggTorrent MCP Server

A Python MCP server that allows programmatic interaction with YggTorrent, enabling torrent search, details retrieval, and magnet link generation without exposing your Ygg passkey.

Category
访问服务器

README

YggTorrent MCP Server & Wrapper

This repository provides a Python wrapper for the YggTorrent website and an MCP (Model Context Protocol) server to interact with it programmatically. This allows for easy integration of YggTorrent functionalities into other applications or services.

Features

  • API wrapper for YggAPI, an unofficial API for YggTorrent.
  • Your Ygg passkey is injected locally into the torrent file/magnet link, ensuring it's not exposed externally.
  • MCP server interface for standardized communication.
  • Search for torrents on YggTorrent (MCP tool).
  • Get details for a specific torrent (MCP tool).
  • Retrieve magnet links (MCP tool).
  • Retrieve torrent files (wrapper only).
  • Retrieve torrent categories (MCP resource).

Setup

There are two primary ways to set up and run this project: using a local Python environment or using Docker.

Prerequisites

  • An active YggTorrent account with a passkey.
  • Python 3.10+ (for local Python setup)
  • pip (Python package installer, for local Python setup)
  • Docker and Docker Compose (for Docker setup)

Install from PyPI

pip install ygg-torrent-mcp

1. Local Python Environment Setup

  1. Clone the repository:

    git clone https://github.com/philogicae/ygg-torrent-mcp.git
    cd ygg-torrent-mcp
    
  2. Create and activate a virtual environment (recommended):

    python3 -m venv venv
    source venv/bin/activate
    # On Windows, use: venv\Scripts\activate
    
  3. Install dependencies:

    pip install -e .
    
  4. Configure environment variables:

    Copy the .env.example file to .env and fill in the required variables (Ygg passkey).

  5. Run the MCP Server:

    python -m ygg_torrent
    

    The MCP server will be accessible locally on port 8000.

2. Docker Setup

This project includes a Dockerfile and docker-compose.yaml for easy containerization.

  1. Clone the repository (if you haven't already):

    git clone https://github.com/philogicae/ygg-torrent-mcp.git
    cd ygg-torrent-mcp
    
  2. Configure environment variables:

    Copy the .env.example file to .env and fill in the required variables (Ygg passkey).

  3. Build and run the Docker container using Docker Compose:

    docker-compose -f docker/compose.yaml up --build
    

    This command will build the Docker image (if it doesn't exist) and start the service.

  4. Accessing the server:

    The MCP server will be accessible on port 8765.

Usage

As Python Wrapper

from ygg_torrent import ygg_api

results = ygg_api.search_torrents('...')
for torrent in results:
    print(torrent.name, torrent.size, torrent.seeders)

As MCP Server

from ygg_torrent import ygg_mcp

ygg_mcp.run(transport="sse")

Via MCP Clients

Once the MCP server is running, you can interact with it using any MCP-compatible client. The server will expose endpoints for:

  • search_torrents: Search for torrents.
  • get_torrent_details: Get details of a specific torrent.
  • get_magnet_link: Get the magnet link for a torrent.

Example for Windsurf

{
  "mcpServers": {
    "mcp-ygg-torrent": {
      "serverUrl": "http://127.0.0.1:8000/sse"
    }
  }
}

Contributing

Contributions are welcome! Please feel free to submit a Pull Request or open an Issue.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选