Yokan Board MCP

Yokan Board MCP

Enables AI agents to interact with Yokan Kanban Board API to manage boards, columns, and tasks through a tool-based interface.

Category
访问服务器

README

Yokan Board MCP

<p align="center"> <img src="./images/avatar.png" alt="Yokan Logo" width="150" style="border-radius: 50%;"> </p>

This project is a Model Context Protocol (MCP) server for the Yokan Kanban Board API. It provides a tool-based interface for AI agents to interact with and manage Kanban boards, columns, and tasks.

Features

  • Board Management: Create, retrieve, update, and delete Kanban boards.
  • Column Management: Create, retrieve, update, reorder, and delete columns within a board.
  • Task Management: Create, retrieve, update, move, and delete tasks.
  • Agent-Ready: Designed to be used by AI agents via the Master Control Protocol.

Tech Stack

Getting Started

Building and Running Docker Image

For new users or those who want to run the server without setting up a development environment, we recommend using Docker.

  1. Build the Docker image:

    docker build -t yokanboard/yokan-mcp .
    
  2. Run the Docker container:

    docker run -p 8888:8888 --name yokan-mcp -e YOKAN_API_BASE_URL=http://your-yokan-api-host:port/api yokanboard/yokan-mcp
    

    Make sure to replace http://your-yokan-api-host:port/api with the actual URL of your Yokan API instance.

MCP Clients Configuration

Gemini CLI with the Streamable Transport

Create .gemini/settings.json with the following content:

{
    "mcpServers": {
        "yokan-board": {
            "httpUrl": "http://[your-yokan-mcp-host]:8888/mcp",
            "headers": {
                "Authorization": "Bearer [TOKEN]",
                "accept": "application/json"
            }
        }
    }
}

VS Code Copilot with the Stdio Transport

Create .vscode/mcp.json file with the following content:

{
    "servers": {
        "yokan-board": {
            "type": "stdio",
            "command": "uv",
            "args": [
                "run",
                "--directory",
                "/full/path/to/yokan-board-mcp-project-folder/yokan-board-mcp",
                "-m",
                "src.main",
                "--stdio"
            ]
        }
    }
}

Development

Prerequisites

  • Python 3.8+
  • uv (for managing the Python environment)
  • Access to a running instance of the Yokan API.

Setup

  1. Clone the repository:

    git clone https://github.com/yokan-board/yokan-board-mcp.git
    cd yokan-board-mcp
    
  2. Create and activate a virtual environment:

    uv venv
    source .venv/bin/activate
    
  3. Install the dependencies:

    uv sync
    

Configuration

  1. Create a .env file by copying .env.example:
    cp .env.example .env
    
  2. Edit the .env file to point to your Yokan API instance:
    YOKAN_API_BASE_URL=http://your-yokan-api-host:port/api
    

Running the Server

To start the MCP server for development, run the following command:

uvicorn src.main:app --host localhost --port 8888 --reload

Testing

To run the integration tests, you need to have a running Yokan API instance and a test user. The tests are configured to use the username user and password password.

Make sure your .env file is correctly configured with the YOKAN_API_BASE_URL.

Run the tests using the following command:

make test

Available Tools

The MCP server exposes the following tools for managing a Yokan Kanban board:

Category Tools
Boards get_boards, get_board, create_board, update_board, delete_board
Columns create_column, get_columns, update_column, reorder_columns, delete_column, update_column_color
Tasks create_task, create_tasks, get_tasks, update_task, move_task, delete_task

Usage Examples

You can interact with the MCP server using the fastmcp client library.

Authentication

To use the tools, you first need to obtain a JWT token from your Yokan API instance. You can do this by sending a POST request to the /login endpoint of the Yokan API.

Example using curl:

curl -X POST \
  -H "Content-Type: application/json" \
  -d '{"username": "your_username", "password": "your_password"}' \
  http://localhost:3001/api/v1.1/login

Example: Interacting with the MCP Server

A Python example demonstrating how to use the fastmcp client to interact with the Yokan MCP server can be found in examples/mcp_client.py.

Copyright

Yokan Board MCP is created by: Julian I. Kamil

© Copyright 2025 Julian I. Kamil. All rights reserved.

License

Yokan Board MCP is available under a dual license:

  • AGPLv3: Free to use, modify, and distribute under the terms of the GNU Affero General Public License Version 3 (see LICENSE.AGPLv3)
  • Commercial License: Available for organizations that wish to use Yokan without AGPLv3's copyleft requirements (see LICENSE.COMMERCIAL)

For information on commercial use licensing, please email: yokan.board@gmail.com

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选