YouTube Knowledge Base MCP
Builds a searchable knowledge base from YouTube video transcripts with hybrid semantic and keyword search. Allows LLM assistants to search, organize, and retrieve timestamped information from videos you've watched.
README
YouTube Knowledge Base MCP
An MCP server that builds a searchable knowledge base from video content.
Why
We consume more content than we can remember. Videos watched, podcasts heard, lectures attended—the information fades. This project builds a searchable knowledge base from that content. Start with YouTube, expand to other sources.
The key: it's an MCP server. Plug it into any LLM (Claude, GPT, local models) and your AI assistant can search everything you've ever watched. Your memory, augmented.
Features
- Extract transcripts from YouTube videos
- Hybrid search (semantic + keyword)
- Timestamped links to exact video moments
- Organize with tags and notes
- Multiple embedding providers (Voyage, OpenAI, local)
Installation
Requirements
- Python 3.10+
- uv package manager
- One of: Voyage API key, OpenAI API key, or local Ollama
Setup
git clone https://github.com/yourusername/youtube-knowledge-base-mcp.git
cd youtube-knowledge-base-mcp
uv sync
Environment
cp .env.example .env
Add your API key (at least one required):
VOYAGE_API_KEY=your_key_here
# or
OPENAI_API_KEY=your_key_here
Usage
With Claude Desktop (recommended)
Add to ~/Library/Application Support/Claude/claude_desktop_config.json:
{
"mcpServers": {
"youtube-kb": {
"command": "uv",
"args": ["--directory", "/path/to/youtube-knowledge-base-mcp", "run", "youtube-kb"]
}
}
}
Then ask Claude: "Add this video to my knowledge base: [URL]"
With Python
See demo.ipynb for interactive examples.
from youtube_knowledgebase_mcp import process_video, search
# Add a video
result = await process_video("https://youtube.com/watch?v=...")
# Search
results = await search("What is context engineering?")
for r in results.results:
print(r.timestamp_link) # Jump to exact moment
MCP Tools
4 workflow-based tools designed for LLM efficiency:
| Tool | Description |
|---|---|
process_video |
Add a video to the knowledge base (with optional tags/summary) |
manage_source |
Update tags and summary for a source |
explore_library |
Browse sources, list tags, or get statistics |
search |
Hybrid semantic + keyword search with reranking |
Developer CLI
Administrative commands for database management (not exposed to LLMs):
uv run kb db stats # Show database statistics
uv run kb db reset --confirm # Reset database (destructive)
uv run kb db migrate <path> # Move database to new location
uv run kb source list # List all sources
uv run kb source delete <id> # Delete a source
uv run kb health # System health check
uv run kb import-urls <file> # Bulk import from file
Run uv run kb --help for all commands.
Configuration
Data Location
By default, data is stored in your OS's standard application data directory:
- macOS:
~/Library/Application Support/youtube-kb/ - Linux:
~/.local/share/youtube-kb/ - Windows:
%APPDATA%/youtube-kb/
Note: If you have existing data in
./data/from a previous version, it will continue to be used automatically.
To use a custom location, set the YOUTUBE_KB_DATA_DIR environment variable:
export YOUTUBE_KB_DATA_DIR=/path/to/custom/location
Or in Claude Desktop config:
{
"mcpServers": {
"youtube-kb": {
"command": "uv",
"args": ["--directory", "/path/to/repo", "run", "youtube-kb"],
"env": {
"YOUTUBE_KB_DATA_DIR": "/custom/data/path"
}
}
}
}
Moving Your Database
To move your database to a new location (e.g., Dropbox):
uv run kb db migrate ~/Dropbox/youtube-kb --confirm
Then follow the printed instructions to set the environment variable.
Architecture
youtube_knowledgebase_mcp/
├── core/ # Config, models, database, embeddings
├── repositories/ # Data access layer (LanceDB)
├── services/ # Business logic (search, ingestion, organization)
├── mcp_tools.py # MCP tools (4 workflow-based tools)
└── cli.py # Developer CLI for admin operations
Tech Stack
- LanceDB - Vector database with hybrid search
- yt-dlp - YouTube transcript extraction
- Embeddings - Voyage (default), OpenAI, BGE, Ollama
- FastMCP - MCP server framework
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。