
YouTube Knowledge MCP
Transforms YouTube into a queryable knowledge source with search, video details, transcript analysis, and AI-powered tools for summaries, learning paths, and knowledge graphs. Features quota-aware API access with caching and optional OpenAI/Anthropic integration for advanced content analysis.
README
YouTube Knowledge MCP
Production-ready Model Context Protocol (MCP) server that turns YouTube into a queryable knowledge source. Search, fetch details, analyze transcripts/comments, and power AI workflows with optional LLMs. Built for Claude Desktop and other MCP clients.
Why this is special
- Fast + quota-aware YouTube API access with caching
- Batteries-included tools for search, details, trending, channels
- Optional AI superpowers (OpenAI/Anthropic) for summaries, topics, chapters, learning paths, comment intents, and knowledge graphs
- Zero noise: minimal config, clear logs, safe defaults
Requirements
- Node.js 18+
- YouTube Data API v3 key
- Optional: OpenAI and/or Anthropic API keys for AI tools
Install
npm install
Configure environment
Create .env
(or set variables in your MCP client config). You can start from the example:
cp env.example .env
Then set values in .env
:
# Required
YOUTUBE_API_KEY=your_youtube_api_key
# Optional AI providers (enables AI tools: analyze_video_content, generate_learning_path, analyze_comment_intents, simplify_video_transcript, generate_video_chapters, generate_knowledge_graph)
OPENAI_API_KEY=your_openai_api_key
ANTHROPIC_API_KEY=your_anthropic_api_key
# Optional tuning
LOG_LEVEL=info
MAX_DAILY_QUOTA=8000
REDIS_URL= # e.g. redis://localhost:6379
REDIS_HOST=
REDIS_PORT=
REDIS_PASSWORD=
An env.example
with placeholders is provided. Do not commit your .env
.
Build and run
# Development (watch)
npm run dev
# Production
npm run build
npm start
Connect to Claude Desktop (example)
Add to your Claude Desktop configuration with absolute paths:
{
"mcpServers": {
"youtube-knowledge": {
"command": "node",
"args": ["/absolute/path/to/youtube-knowledge-mcp/build/index.js"],
"env": {
"YOUTUBE_API_KEY": "your_youtube_api_key",
"OPENAI_API_KEY": "optional_openai",
"ANTHROPIC_API_KEY": "optional_anthropic",
"LOG_LEVEL": "info"
}
}
}
}
Restart Claude Desktop after editing the config.
Available tools
youtube_search
— Search videos with filtersget_video_details
— Video metadata, transcript (best-effort), commentsget_trending_videos
— Most popular by region/categorysearch_channels
— Channel search with optional statsanalyze_video_content
— AI topics/sentiment/questions/summary/keywordsgenerate_learning_path
— AI learning path for a topicanalyze_comment_intents
— Classify viewer intentssimplify_video_transcript
— ELI5-style simplificationgenerate_video_chapters
— AI chapters with timestampsgenerate_knowledge_graph
— Cross-video concept graph
Note: AI tools are available only if an AI provider key is configured.
Quotas and safety
- Enforces daily quota (default 8000 units) and cost-aware AI usage
- Logs to stderr (does not break MCP stdio)
- Caching reduces API and token spend; optional Redis supported
Troubleshooting
- Missing key: ensure
YOUTUBE_API_KEY
is set - Quota exceeded: lower usage, enable caching, or raise
MAX_DAILY_QUOTA
- Claude cannot connect: verify absolute path to
build/index.js
and restart
License
MIT By Efi Kuta
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。