YouTube MCP Server

YouTube MCP Server

Enables AI agents to extract YouTube video metadata and generate high-quality multilingual transcriptions with voice activity detection, supporting 99 languages with translation capabilities and intelligent caching.

Category
访问服务器

README

YouTube MCP Server

A powerful Model Context Protocol (MCP) server for YouTube video transcription and metadata extraction. This server provides advanced tools for AI agents to retrieve video metadata and generate high-quality transcriptions with native language support.

🌟 Features

  • Metadata Extraction: Retrieve comprehensive video details (title, description, views, duration, etc.) without downloading the video.
  • Smart Transcription:
    • In-Memory Processing: fast, efficient, and disk-I/O free pipeline.
    • VAD (Voice Activity Detection): uses Silero VAD for precise segmentation.
    • Multilingual Support: supports 99 languages.
    • Translation: Transcribe to any supported language.
  • Caching: Intelligent file-based caching to avoid redundant processing.
  • Optimized Performance:
    • Uses yt-dlp for robust extraction.
    • Hardware acceleration (MPS/CUDA) for Whisper inference.
    • Parallel processing for transcription segments.

🛠️ Prerequisites

  • Python 3.10+
  • ffmpeg: Required for audio processing.
    • Mac: brew install ffmpeg
    • Linux: sudo apt install ffmpeg
    • Windows: Download and add to PATH.

📦 Installation

  1. Clone the repository:

    git clone https://github.com/mourad-ghafiri/youtube-mcp-server
    cd youtube-mcp-server
    
  2. Install dependencies: Using uv (recommended):

    uv sync
    

⚙️ Configuration

The server configuration is located in src/youtube_mcp_server/config.py. You can adjust the following parameters:

Directories

  • TRANSCRIPTIONS_DIR: Directory where transcription JSON files are cached (default: "transcriptions").

Models

  • WHISPER_MODEL_NAME: OpenAI Whisper model to use. Options: "tiny", "base", "small", "medium", "large", "turbo". (default: "tiny").

    Note: Larger models require more RAM and a GPU (CUDA/MPS).

  • SILERO_REPO / SILERO_MODEL: VAD model repository and ID.

Audio Processing

  • SAMPLING_RATE: Audio sampling rate for Whisper/VAD (default: 16000 Hz).
  • SEGMENT_PADDING_MS: Padding added to each audio segment to avoid cutting off words (default: 200 ms).

Concurrency

  • MAX_WORKERS: Number of parallel threads for transcribing audio segments (default: 4). Increasing this speeds up transcription but uses more CPU/Memory.

🚀 Usage

1. Start the Server

uv run main.py

The server runs on SSE (Server-Sent Events) transport at http://127.0.0.1:8000/sse.

2. Configure MCP Client

Add the server configuration to your MCP client:

{
  "mcpServers": {
    "youtube": {
      "url": "http://127.0.0.1:8000/sse"
    }
  }
}

🛠️ Tools Reference

get_video_info

Retrieves metadata for a given YouTube video.

  • Input: url (string)
  • Output: JSON object with title, views, description, thumbnails, etc.
    {
      "id": "VIDEO_ID",
      "title": "Video Title",
      "description": "Video description...",
      "view_count": 1000000,
      "duration": 212,
      "uploader": "Channel Name",
      "upload_date": "20091025",
      "thumbnail": "https://i.ytimg.com/...",
      "tags": ["tag1", "tag2"],
      "categories": ["Music"]
    }
    

transcribe_video

Transcribes a video with optional translation.

  • Inputs:
    • url (string): Video URL.
    • language (string, default="auto"):
      • "auto": Transcribe in detected language.
      • "en": Translate to English.
      • "fr", "es", etc.: Transcribe in specific language.
  • Output: JSON with segments and metadata.
    {
      "id": "VIDEO_ID",
      "title": "Video Title",
      "duration": 212,
      "transcription": [
        {
          "from": "00:00:00",
          "to": "00:00:05",
          "transcription": "First segment text..."
        },
        {
          "from": "00:00:05",
          "to": "00:00:10",
          "transcription": "Second segment text..."
        }
      ]
    }
    

🏗️ Technical Architecture

  • Services: DownloadService, VADService (Silero), WhisperService (OpenAI), CacheService.
  • In-Memory Pipeline: Audio is downloaded -> loaded to RAM -> segmented by VAD -> transcribed by Whisper -> Cached.
  • Concurrency: Parallel segment transcription.

🌍 Appendix: Supported Languages

Country (Primary/Region) Language Code
South Africa Afrikaans af
Ethiopia Amharic am
Arab World Arabic ar
India Assamese as
Azerbaijan Azerbaijani az
Russia Bashkir ba
Belarus Belarusian be
Bulgaria Bulgarian bg
Bangladesh Bengali bn
Tibet Tibetan bo
France (Brittany) Breton br
Bosnia and Herzegovina Bosnian bs
Spain (Catalonia) Catalan ca
Czech Republic Czech cs
Wales Welsh cy
Denmark Danish da
Germany German de
Greece Greek el
USA / UK English en
Spain Spanish es
Estonia Estonian et
Spain (Basque) Basque eu
Iran Persian fa
Finland Finnish fi
Faroe Islands Faroese fo
France French fr
Spain (Galicia) Galician gl
India Gujarati gu
Nigeria Hausa ha
Hawaii Hawaiian haw
Israel Hebrew he
India Hindi hi
Croatia Croatian hr
Haiti Haitian Creole ht
Hungary Hungarian hu
Armenia Armenian hy
Indonesia Indonesian id
Iceland Icelandic is
Italy Italian it
Japan Japanese ja
Indonesia (Java) Javanese jw
Georgia Georgian ka
Kazakhstan Kazakh kk
Cambodia Khmer km
India Kannada kn
South Korea Korean ko
Ancient Rome Latin la
Luxembourg Luxembourgish lb
Congo Lingala ln
Laos Lao lo
Lithuania Lithuanian lt
Latvia Latvian lv
Madagascar Malagasy mg
New Zealand Maori mi
North Macedonia Macedonian mk
India Malayalam ml
Mongolia Mongolian mn
India Marathi mr
Malaysia Malay ms
Malta Maltese mt
Myanmar Myanmar my
Nepal Nepali ne
Netherlands Dutch nl
Norway Nynorsk nn
Norway Norwegian no
France (Occitania) Occitan oc
India (Punjab) Punjabi pa
Poland Polish pl
Afghanistan Pashto ps
Portugal / Brazil Portuguese pt
Romania Romanian ro
Russia Russian ru
India Sanskrit sa
Pakistan Sindhi sd
Sri Lanka Sinhala si
Slovakia Slovak sk
Slovenia Slovenian sl
Zimbabwe Shona sn
Somalia Somali so
Albania Albanian sq
Serbia Serbian sr
Indonesia Sundanese su
Sweden Swedish sv
East Africa Swahili sw
India Tamil ta
India Telugu te
Tajikistan Tajik tg
Thailand Thai th
Turkmenistan Turkmen tk
Philippines Tagalog tl
Turkey Turkish tr
Russia (Tatarstan) Tatar tt
Ukraine Ukrainian uk
Pakistan Urdu ur
Uzbekistan Uzbek uz
Vietnam Vietnamese vi
Ashkenazi Jewish Yiddish yi
Nigeria Yoruba yo
China (Guangdong) Cantonese yue
China Chinese zh

🤝 Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

  1. Fork the project
  2. Create your feature branch (git checkout -b feature/AmazingFeature)
  3. Commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push to the branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

📄 License

Distributed under the MIT License. See LICENSE for more information.


<p align="center">Built with love ❤️</p>

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选