YouTube Toolbox

YouTube Toolbox

An MCP server that provides AI assistants with powerful tools to interact with YouTube, including video searching, transcript extraction, comment retrieval, and more.

Category
访问服务器

README

py-mcp-youtube-toolbox

smithery badge Version License

An MCP server that provides AI assistants with powerful tools to interact with YouTube, including video searching, transcript extraction, comment retrieval, and more.

Overview

py-mcp-youtube-toolbox provides the following YouTube-related functionalities:

  • Search YouTube videos with advanced filtering options
  • Get detailed information about videos and channels
  • Retrieve video comments with sorting options
  • Extract video transcripts and captions in multiple languages
  • Find related videos for a given video
  • Get trending videos by region
  • Generate summaries of video content based on transcripts
  • Advanced transcript analysis with filtering, searching, and multi-video capabilities

Table of Contents

Prerequisites

  1. Python: Install Python 3.12 or higher
  2. YouTube API Key:
    • Go to Google Cloud Console
    • Create a new project or select an existing one
    • Enable the YouTube Data API v3:
      1. Go to "APIs & Services" > "Library"
      2. Search for and enable "YouTube Data API v3"
    • Create credentials:
      1. Go to "APIs & Services" > "Credentials"
      2. Click "Create Credentials" > "API key"
      3. Note down your API key

Installation

Git Clone

git clone https://github.com/jikime/py-mcp-youtube-toolbox.git
cd py-mcp-youtube-toolbox

Configuration

  1. Install UV package manager:
curl -LsSf https://astral.sh/uv/install.sh | sh
  1. Create and activate virtual environment:
uv venv -p 3.12
source .venv/bin/activate  # On MacOS/Linux
# or
.venv\Scripts\activate  # On Windows
  1. Install dependencies:
uv pip install -r requirements.txt
  1. Environment variables:
cp env.example .env
vi .env
# Update with your YouTube API key
YOUTUBE_API_KEY=your_youtube_api_key

Using Docker

  1. Build the Docker image:
docker build -t py-mcp-youtube-toolbox .
  1. Run the container:
docker run -e YOUTUBE_API_KEY=your_youtube_api_key py-mcp-youtube-toolbox

Using Local

  1. Run the server:
mcp run server.py
  1. Run the MCP Inspector:
mcp dev server.py

Configure MCP Settings

Add the server configuration to your MCP settings file:

Claude desktop app

  1. To install automatically via Smithery:
npx -y @smithery/cli install @jikime/py-mcp-youtube-toolbox --client claude
  1. To install manually open ~/Library/Application Support/Claude/claude_desktop_config.json

Add this to the mcpServers object:

{
  "mcpServers": {
    "YouTube Toolbox": {
      "command": "/path/to/bin/uv",
      "args": [
        "--directory",
        "/path/to/py-mcp-youtube-toolbox",
        "run",
        "server.py"
      ],
      "env": {
        "YOUTUBE_API_KEY": "your_youtube_api_key"
      }
    }
  }
}

Cursor IDE

open ~/.cursor/mcp.json

Add this to the mcpServers object:

{
  "mcpServers": {
    "YouTube Toolbox": {
      "command": "/path/to/bin/uv",
      "args": [
        "--directory",
        "/path/to/py-mcp-youtube-toolbox",
        "run",
        "server.py"
      ],
      "env": {
        "YOUTUBE_API_KEY": "your_youtube_api_key"
      }
    }
  }
}

for Docker

{
  "mcpServers": {
    "YouTube Toolbox": {
      "command": "docker",
      "args": [
        "run",
        "-i",
        "--rm",
        "-e", "YOUTUBE_API_KEY=your_youtube_api_key",
        "py-mcp-youtube-toolbox"
      ]
    }
  }
}

Tools Documentation

Video Tools

  • search_videos: Search for YouTube videos with advanced filtering options (channel, duration, region, etc.)
  • get_video_details: Get detailed information about a specific YouTube video (title, channel, views, likes, etc.)
  • get_video_comments: Retrieve comments from a YouTube video with sorting options
  • get_related_videos: Find videos related to a specific YouTube video
  • get_trending_videos: Get trending videos on YouTube by region

Channel Tools

  • get_channel_details: Get detailed information about a YouTube channel (name, subscribers, views, etc.)

Transcript Tools

  • get_video_transcript: Extract transcripts/captions from YouTube videos in specified languages
  • get_video_enhanced_transcript: Advanced transcript extraction with filtering, search, and multi-video capabilities

Prompt Tools

  • transcript_summary: Generate summaries of YouTube video content based on transcripts with customizable options

Resource Tools

  • youtube://available-youtube-tools: Get a list of all available YouTube tools
  • youtube://video/{video_id}: Get detailed information about a specific video
  • youtube://channel/{channel_id}: Get information about a specific channel
  • youtube://transcript/{video_id}?language={language}: Get transcript for a specific video

Development

For local testing, you can use the included client script:

# Example: Search videos
uv run client.py search_videos query="MCP" max_results=5

# Example: Get video details
uv run client.py get_video_details video_id=zRgAEIoZEVQ

# Example: Get channel details
uv run client.py get_channel_details channel_id=UCRpOIr-NJpK9S483ge20Pgw

# Example: Get video comments
uv run client.py get_video_comments video_id=zRgAEIoZEVQ max_results=10 order=time

# Example: Get video transcript
uv run client.py get_video_transcript video_id=zRgAEIoZEVQ language=ko

# Example: Get related videos
uv run client.py get_related_videos video_id=zRgAEIoZEVQ max_results=5

# Example: Get trending videos
uv run client.py get_trending_videos region_code=ko max_results=10

# Example: Advanced transcript extraction
uv run client.py get_video_enhanced_transcript video_ids=zRgAEIoZEVQ language=ko format=timestamped include_metadata=true filters.timeRange.start=100 filters.timeRange.end=200 filters.search.query=에이전트 filters.search.caseSensitive=true filters.segment.method=equal filters.segment.count=2

# Example: 

License

MIT License

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选