YouTube Transcript MCP Server
Enables fetching, searching, and analyzing YouTube video transcripts in multiple languages using yt-dlp. Supports timestamp filtering, language detection, and transcript summaries with robust error handling for production use.
README
YouTube Transcript MCP Server
A production-ready Model Context Protocol (MCP) server that provides YouTube transcript fetching capabilities using yt-dlp CLI for reliable subtitle extraction. Bypasses YouTube's rate limiting through CLI-based implementation.
Status: Production Ready ✅
Implementation: Full CLI migration complete (September 2025)
- ✅ CLI-Based: Uses yt-dlp subprocess to avoid HTTP rate limiting
- ✅ Universal Compatibility: Time parameters work across all MCP clients
- ✅ Advanced Analytics: Enhanced transcript summary with content analysis
- ✅ Multi-Language: 100+ languages with auto-generated and manual transcripts
Features
- Fetch transcripts from YouTube videos with metadata and timestamps
- Time filtering - extract specific segments by start/end times
- Search functionality - find text within transcripts with context
- Advanced analytics - speaking pace, filler words, engagement metrics, top words
- Language detection - list available transcript languages
- Universal format support - handles both video IDs and full YouTube URLs
- Dual transport - STDIO and HTTP transport modes
- Docker support - containerized deployment with health checks
Installation
Quick Start
# Install dependencies
uv pip install -e .
# Run server (STDIO mode)
python src/server.py
# Run server (HTTP mode)
uvicorn src.server:app --host 0.0.0.0 --port 8080
Docker (Recommended)
# Build and run
docker build -t yttranscript-mcp .
docker run -d -p 8080:8080 yttranscript-mcp
# Or use docker-compose
docker-compose up -d yttranscript-mcp
# Health check
curl http://localhost:8080/health
Usage
Available Tools
- get_transcript - Fetch video transcripts with optional time filtering
- search_transcript - Search for specific text within transcripts
- get_transcript_summary - Advanced analytics and content insights
- get_available_languages - List available transcript languages
Testing Commands
# Discover tools
mcp tools .venv/bin/python src/server.py
# Basic transcript
mcp call get_transcript --params '{"video_id":"jNQXAC9IVRw"}' .venv/bin/python src/server.py
# Time-filtered transcript
mcp call get_transcript --params '{"video_id":"jNQXAC9IVRw", "start_time": 10, "end_time": 60}' .venv/bin/python src/server.py
# Search within transcript
mcp call search_transcript --params '{"video_id":"jNQXAC9IVRw", "query":"example"}' .venv/bin/python src/server.py
# Advanced analytics
mcp call get_transcript_summary --params '{"video_id":"jNQXAC9IVRw"}' .venv/bin/python src/server.py
# Available languages
mcp call get_available_languages --params '{"video_id":"jNQXAC9IVRw"}' .venv/bin/python src/server.py
MCP Client Configuration
HTTP Transport (Production)
{
"yttranscript": {
"command": "uvicorn",
"args": [
"src.server:app",
"--host", "0.0.0.0",
"--port", "8080"
],
"cwd": "/path/to/yttranscript_mcp"
}
}
STDIO Transport (Development)
{
"yttranscript": {
"command": "uv",
"args": [
"run",
"--directory", "/path/to/yttranscript_mcp",
"src/server.py"
]
}
}
Key Features
Universal Parameter Compatibility
Time filtering parameters accept multiple formats:
- Integers:
{"start_time": 10} - Floats:
{"start_time": 10.5} - Strings:
{"start_time": "10"} - Nulls:
{"start_time": null}or{"start_time": "null"}
Advanced Analytics
The get_transcript_summary tool provides:
- Speaking pace analysis (words per minute with descriptive labels)
- Filler word detection (um, uh, like, etc.) with percentages
- Content indicators (conversational, formal, high energy)
- Top frequent words (excluding stop words)
- Engagement metrics (questions, exclamations)
- Reading time estimates at multiple speeds
CLI Implementation Benefits
- No rate limiting - bypasses YouTube's HTTP restrictions
- Reliable extraction - uses yt-dlp's robust parsing
- Better error handling - clear error messages for various failure modes
- Format flexibility - handles VTT, JSON3, and other subtitle formats
Configuration
Environment Variables
YT_TRANSCRIPT_SERVER_PORT=8080 # Server port (default: 8080)
YT_TRANSCRIPT_SERVER_HOST=0.0.0.0 # Server host (default: 0.0.0.0)
YT_TRANSCRIPT_DEBUG=false # Debug mode
Docker Environment
# Production
docker run -e YT_TRANSCRIPT_SERVER_PORT=8080 yttranscript-mcp
# Development with auto-reload
docker-compose --profile dev up yttranscript-mcp-dev
Dependencies
- fastmcp>=0.9.0 - MCP server framework
- yt-dlp>=2025.8.11 - YouTube transcript extraction via CLI
- pydantic>=2.0.0 - Data validation and models
- uvicorn>=0.24.0 - ASGI server for HTTP transport
This project uses uv for package management.
Troubleshooting
- Tool not found: Verify
@mcp.tool()decorator in tool definitions - Validation errors: Video IDs must be 11 characters, time values must be non-negative
- Time filtering issues: Parameters accept multiple formats (int/float/string/null)
- Transport issues: Use
uvicornfor HTTP mode,python src/server.pyfor STDIO - No transcript available: Check with
get_available_languagesfirst
License
This project is open source and available under the MIT License.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。