Youtube2Text
A powerful text extraction service that converts YouTube video content into clean, timestampless transcripts for content analysis, research, and processing workflows.
README
YouTube2Text - Video Transcription API
A powerful text extraction service that converts YouTube video content into clean, timestampless transcripts for content analysis, research, and processing workflows.
Overview
YouTube2Text transforms YouTube videos into readable text by removing subtitle timing markers and metadata, delivering pure content suitable for:
- Content analysis and insights
- Text summarization workflows
- Research and documentation
- Content generation pipelines
- Natural language processing tasks
Quick Start
Begin with a demo API key from https://api.youtube2text.org. For consistent access and higher usage limits, upgrade to a subscription plan.
API Reference
Base URL: https://api.youtube2text.org
Transcription Endpoint: /transcribe
Request Format
Send POST requests with these parameters:
| Parameter | Type | Required | Description |
|---|---|---|---|
url |
string | Yes | Complete YouTube video URL |
maxChars |
number | No | Character limit (default: 150,000) |
Authentication
Include your API key in the request header:
x-api-key: YOUR_API_KEY
HTTP Status Codes
| Code | Meaning |
|---|---|
| 200 | Transcription successful |
| 400 | Invalid request parameters |
| 401 | Authentication failed |
| 404 | Video or transcript not found |
| 429 | Rate limit exceeded |
| 500 | Server error |
Error Types
VALIDATION_ERROR: Parameter validation failedUNAUTHORIZED: Invalid API credentialsVIDEO_NOT_FOUND: YouTube video unavailableTRANSCRIPT_UNAVAILABLE: No captions availableINVALID_URL: Malformed video URLRATE_LIMIT_EXCEEDED: Quota or rate limit reachedINTERNAL_ERROR: Server-side issue
Examples
This directory contains examples of how to use the YouTube2Text API with different AI models and in different programming languages.
Python
JavaScript
TypeScript
Automation Integration
Workflow Automation
The API integrates with popular automation platforms:
- Zapier: Connect via MCP integration for triggered workflows
- n8n: Use HTTP request nodes or MCP connectors for process automation
- Make (Integromat): HTTP modules for video processing pipelines
Example Workflow Ideas
- Content Pipeline: YouTube → Transcription → Summary → Social Media Posts
- Research Automation: Video URLs → Transcripts → Analysis → Report Generation
- Content Monitoring: Channel Watching → New Videos → Auto-transcription → Alerts
Response Examples
Successful Response
{
"result": {
"videoId": "dQw4w9WgXcQ",
"title": "Rick Astley - Never Gonna Give You Up (Official Video)",
"pubDate": "2009-10-25T07:57:33-07:00",
"content": "We're no strangers to love You know the rules and so do I...",
"contentSize": 1337,
"truncated": false
}
}
Error Response
{
"error": {
"code": "RATE_LIMIT_EXCEEDED",
"message": "Monthly quota exceeded",
"status": 429,
"retryAfterSeconds": 3600,
"details": "Upgrade plan for higher limits"
}
}
Best Practices
- Store API keys securely using environment variables
- Implement proper error handling for all status codes
- Respect rate limits and implement retry logic with exponential backoff
- Cache transcripts locally when possible to avoid redundant API calls
- Monitor usage to stay within quota limits
- Use appropriate
maxCharslimits for your use case
Support
For additional examples, troubleshooting, and advanced integration patterns, visit the project repository or API documentation.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。