yt-fetch

yt-fetch

An MCP server that enables interaction with the YouTube Data API, allowing users to search videos, get video and channel details, analyze trends, and fetch video transcripts.

Category
访问服务器

README

yt-fetch MCP Server

yt-fetch is a Model-Context-Protocol (MCP) server designed to provide tools and resources for interacting with the YouTube Data API v3. It allows a client (like Claude for Desktop) to search for videos, retrieve video and channel details, analyze trends, and fetch video transcripts.

Features

  • Search Videos: Comprehensive search with filters for date, duration, order, and more.
  • Video & Channel Details: Fetch detailed metadata for specific videos and channels.
  • Transcript Analysis: Extract and analyze video transcripts.
  • Trending Videos: Get insights into trending videos by region and category.
  • Custom Filtering: Apply advanced filters on video lists based on views, duration, and keywords.
  • Rich Logging: Formatted and colorful logging for better readability.

Tools

The server exposes the following tools:

Tool Name Description
search_videos Search YouTube for videos with various filters and sorting options.
get_video_details Get detailed information about a specific YouTube video.
get_channel_info Get information about a YouTube channel.
filter_videos Apply custom filters to a list of videos.
get_transcripts Extract transcripts from selected videos for detailed analysis.
trending_analysis Get and analyze trending videos in specific categories.

Resources

The server provides the following resources:

URI Description
youtube://search/{query} Cached search results for YouTube videos with metadata.
youtube://video/{video_id}/metadata Full metadata for a specific YouTube video including stats and details.
youtube://channel/{channel_id} Channel information including stats, description, and recent videos.

Setup and Installation

This project uses uv for dependency management.

  1. Install uv: If you don't have uv, install it using the recommended command from Astral:

    curl -LsSf https://astral.sh/uv/install.sh | sh
    
  2. Create a virtual environment and install dependencies:

    uv venv
    uv pip install -e .
    
  3. Set up your YouTube API Key: You need a YouTube Data API v3 key. Once you have it, set it as an environment variable:

    export YOUTUBE_API_KEY="your-youtube-api-key-here"
    

    For persistent storage, you can add this to your shell's configuration file (e.g., .zshrc, .bashrc).

Running the Server

You can run the server directly from your terminal:

uv run yt-fetch

The server will start and listen for requests over stdio.

Automated Claude Desktop Configuration

For a seamless setup with Claude Desktop, you can use the included setup_mcp.sh script. This script will automatically detect your operating system, find your Claude Desktop configuration directory, and create the necessary claude_desktop_config.json file for you.

Before running the script, make sure you have set the YOUTUBE_API_KEY environment variable.

To run the script, execute the following command from the root of the project:

./setup_mcp.sh

The script will:

  1. Verify that your YOUTUBE_API_KEY is set.
  2. Determine the correct path for your Claude Desktop configuration.
  3. Generate the claude_desktop_config.json with the correct project path and your API key.

After running the script, simply restart Claude Desktop, and the yt-fetch server will be available.

Claude Desktop Configuration

To use this server with an MCP client like Claude Desktop, you need to configure it in your claude_desktop_config.json. This file tells the client how to start and communicate with the server.

Here is an example configuration. Place this in your Claude Desktop configuration file:

{
  "mcpServers": {
    "yt-fetch": {
      "command": "uv",
      "args": [
        "run",
        "--project",
        "/path/to/your/yt-fetch", // <-- IMPORTANT: Change this to the absolute path of the project
        "yt-fetch"
      ],
      "env": {
        "YOUTUBE_API_KEY": "your-youtube-api-key-here" // <-- IMPORTANT: Replace with your actual key
      }
    }
  }
}

Key points for the configuration:

  • "yt-fetch": This is the name you'll use to refer to the server in your client.
  • command: The executable to run. We use uv.
  • args: The arguments to pass to the command.
    • --project: Make sure to provide the absolute path to the root of this yt-fetch repository.
    • yt-fetch: This is the script name defined in pyproject.toml.
  • env: Environment variables to set for the server process. You must provide your YOUTUBE_API_KEY here.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选