
yt-fetch
An MCP server that enables interaction with the YouTube Data API, allowing users to search videos, get video and channel details, analyze trends, and fetch video transcripts.
README
yt-fetch MCP Server
yt-fetch
is a Model-Context-Protocol (MCP) server designed to provide tools and resources for interacting with the YouTube Data API v3. It allows a client (like Claude for Desktop) to search for videos, retrieve video and channel details, analyze trends, and fetch video transcripts.
Features
- Search Videos: Comprehensive search with filters for date, duration, order, and more.
- Video & Channel Details: Fetch detailed metadata for specific videos and channels.
- Transcript Analysis: Extract and analyze video transcripts.
- Trending Videos: Get insights into trending videos by region and category.
- Custom Filtering: Apply advanced filters on video lists based on views, duration, and keywords.
- Rich Logging: Formatted and colorful logging for better readability.
Tools
The server exposes the following tools:
Tool Name | Description |
---|---|
search_videos |
Search YouTube for videos with various filters and sorting options. |
get_video_details |
Get detailed information about a specific YouTube video. |
get_channel_info |
Get information about a YouTube channel. |
filter_videos |
Apply custom filters to a list of videos. |
get_transcripts |
Extract transcripts from selected videos for detailed analysis. |
trending_analysis |
Get and analyze trending videos in specific categories. |
Resources
The server provides the following resources:
URI | Description |
---|---|
youtube://search/{query} |
Cached search results for YouTube videos with metadata. |
youtube://video/{video_id}/metadata |
Full metadata for a specific YouTube video including stats and details. |
youtube://channel/{channel_id} |
Channel information including stats, description, and recent videos. |
Setup and Installation
This project uses uv
for dependency management.
-
Install
uv
: If you don't haveuv
, install it using the recommended command from Astral:curl -LsSf https://astral.sh/uv/install.sh | sh
-
Create a virtual environment and install dependencies:
uv venv uv pip install -e .
-
Set up your YouTube API Key: You need a YouTube Data API v3 key. Once you have it, set it as an environment variable:
export YOUTUBE_API_KEY="your-youtube-api-key-here"
For persistent storage, you can add this to your shell's configuration file (e.g.,
.zshrc
,.bashrc
).
Running the Server
You can run the server directly from your terminal:
uv run yt-fetch
The server will start and listen for requests over stdio.
Automated Claude Desktop Configuration
For a seamless setup with Claude Desktop, you can use the included setup_mcp.sh
script. This script will automatically detect your operating system, find your Claude Desktop configuration directory, and create the necessary claude_desktop_config.json
file for you.
Before running the script, make sure you have set the YOUTUBE_API_KEY
environment variable.
To run the script, execute the following command from the root of the project:
./setup_mcp.sh
The script will:
- Verify that your
YOUTUBE_API_KEY
is set. - Determine the correct path for your Claude Desktop configuration.
- Generate the
claude_desktop_config.json
with the correct project path and your API key.
After running the script, simply restart Claude Desktop, and the yt-fetch
server will be available.
Claude Desktop Configuration
To use this server with an MCP client like Claude Desktop, you need to configure it in your claude_desktop_config.json
. This file tells the client how to start and communicate with the server.
Here is an example configuration. Place this in your Claude Desktop configuration file:
{
"mcpServers": {
"yt-fetch": {
"command": "uv",
"args": [
"run",
"--project",
"/path/to/your/yt-fetch", // <-- IMPORTANT: Change this to the absolute path of the project
"yt-fetch"
],
"env": {
"YOUTUBE_API_KEY": "your-youtube-api-key-here" // <-- IMPORTANT: Replace with your actual key
}
}
}
}
Key points for the configuration:
"yt-fetch"
: This is the name you'll use to refer to the server in your client.command
: The executable to run. We useuv
.args
: The arguments to pass to the command.--project
: Make sure to provide the absolute path to the root of thisyt-fetch
repository.yt-fetch
: This is the script name defined inpyproject.toml
.
env
: Environment variables to set for the server process. You must provide yourYOUTUBE_API_KEY
here.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。