
Zeek-MCP
A Model Context Protocol server that integrates Zeek network analysis capabilities with LLM chatbots, allowing them to analyze PCAP files and parse network logs through natural language interactions.
README
Zeek-MCP
This repository provides a set of utilities to build an MCP server (Model Context Protocol) that you can integrate with your LLM chatbot client.
Table of Contents
Prerequisites
- Python 3.7+
- Zeek installed and available in your
PATH
(for theexeczeek
tool) - pip (for installing Python dependencies)
Installation
1. Clone the repository
git clone https://github.com/Gabbo01/Zeek-MCP
cd Zeek-MCP
2. Install dependencies
It's recommended to use a virtual environment:
python -m venv venv
source venv/bin/activate # Linux/macOS
venv\Scripts\activate # Windows
pip install -r requirements.txt
Note: If you don’t have a
requirements.txt
, install directly:pip install pandas mcp
Usage
The repository exposes three main MCP tools and a command-line entry point:
3. Run the MCP server
python Bridge_Zeek_MCP.py --mcp-host 127.0.0.1 --mcp-port 8081 --transport sse
--mcp-host
: Host for the MCP server (default:127.0.0.1
).--mcp-port
: Port for the MCP server (default:8081
).--transport
: Transport protocol, eithersse
(Server-Sent Events) orstdio
.
4. Use the MCP tools
You need to use an LLM that can support the MCP tools usage by tools call.
-
execzeek(pcap_path: str) -> str
- Description: Runs Zeek on the given PCAP file after deleting existing
.log
files in the working directory. - Returns: A string listing generated
.log
filenames or"1"
on error.
- Description: Runs Zeek on the given PCAP file after deleting existing
-
parselogs(logfile: str) -> DataFrame
- Description: Parses a single Zeek
.log
file and returns the parsed content.
- Description: Parses a single Zeek
You can interact with these endpoints via HTTP (if using SSE transport) or by embedding in LLM client (eg: Claude Desktop):
Claude Desktop integration:
To set up Claude Desktop as a Zeek MCP client, go to Claude
-> Settings
-> Developer
-> Edit Config
-> claude_desktop_config.json
and add the following:
{
"mcpServers": {
"Zeek-mcp": {
"command": "python",
"args": [
"/ABSOLUTE_PATH_TO/Bridge_Zeek_MCP.py",
]
}
}
}
Alternatively, edit this file directly:
/Users/YOUR_USER/Library/Application Support/Claude/claude_desktop_config.json
5ire Integration:
Another MCP client that supports multiple models on the backend is 5ire. To set up Zeek-MCP, open 5ire and go to Tools
-> New
and set the following configurations:
- Tool Key: ZeekMCP
- Name: Zeek-MCP
- Command:
python /ABSOLUTE_PATH_TO/Bridge_Zeek_MCP.py
Alternatively you can use Chainlit framework and follow the documentation to integrate the MCP server.
Examples
An example of MCP tools usage from a chainlit chatbot client, it was used an example pcap file (you can find fews in pcaps folder)
In that case the used model was claude-3.7-sonnet-reasoning-gemma3-12b
License
See LICENSE
for more information.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。