Zignet
Enables AI-powered Zig programming assistance through code generation, debugging, and documentation explanation. Uses local LLM models to provide idiomatic Zig code creation and analysis capabilities.
README
ZigNet
MCP Server for Zig — Intelligent code analysis, validation, and documentation powered by a fine-tuned LLM
ZigNet integrates with Claude (and other MCP-compatible LLMs) to provide real-time Zig code analysis without leaving your chat interface.
🎯 Features
MCP Tools
<details> <summary><b>🔍 analyze_zig</b> — Syntax and type checking with official Zig compiler</summary>
Analyze Zig code for syntax errors, type mismatches, and semantic issues using zig ast-check.
Example usage:
User: "Analyze this Zig code"
Claude: [calls analyze_zig tool]
Response: "✅ Syntax: Valid | Type Check: PASS | Warnings: 0"
Capabilities:
- Lexical analysis (tokenization)
- Syntax parsing (AST generation)
- Type checking and validation
- Semantic error detection
- Line/column error reporting
</details>
<details> <summary><b>✨ compile_zig</b> — Format and validate Zig code</summary>
Validate and format Zig code using zig fmt, generating clean, idiomatic output.
Example:
// Input (messy)
fn add(a:i32,b:i32)i32{return a+b;}
// Output (formatted)
fn add(a: i32, b: i32) i32 {
return a + b;
}
Capabilities:
- Code formatting (2-space indentation)
- Syntax validation
- Best practices enforcement
- Preserves semantics
</details>
<details> <summary><b>📖 get_zig_docs</b> — AI-powered documentation lookup (coming soon)</summary>
Retrieve Zig documentation and explanations for language features using a fine-tuned LLM.
Example:
Query: "comptime"
Response: "comptime enables compile-time evaluation in Zig..."
Powered by:
- Fine-tuned Qwen2.5-Coder-7B model
- 13,756 examples from Zig 0.13-0.15
- Specialized on advanced Zig idioms (comptime, generics, error handling)
</details>
<details> <summary><b>🔧 suggest_fix</b> — Intelligent error fix suggestions (coming soon)</summary>
Get intelligent code fix suggestions for Zig errors using AI-powered analysis.
Example:
// Error: "Type mismatch: cannot assign string to i32"
var x: i32 = "hello";
// Suggestions:
// Option 1: var x: []const u8 = "hello"; // If you meant string
// Option 2: var x: i32 = 42; // If you meant integer
Features:
- Context-aware suggestions
- Multiple fix options
- Explanation of the issue
- Zig idiom recommendations
</details>
📖 Usage
ZigNet is an MCP server — configure it once in your MCP client, then use it naturally in conversation.
<details> <summary><b>🖥️ Claude Desktop</b></summary>
Configuration file location:
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json - Linux:
~/.config/Claude/claude_desktop_config.json - Windows:
%APPDATA%\Claude\claude_desktop_config.json
Add this:
{
"mcpServers": {
"zignet": {
"command": "npx",
"args": ["-y", "zignet"]
}
}
}
Then restart Claude Desktop and start using:
You: "Analyze this Zig code for errors"
[paste code]
Claude: [uses analyze_zig tool]
"Found 1 type error: variable 'x' expects i32 but got []const u8"
</details>
<details> <summary><b>🔧 VS Code (with GitHub Copilot)</b></summary>
Method 1: VS Code Marketplace (coming soon)
- Open VS Code Extensions (
Ctrl+Shift+X/Cmd+Shift+X) - Search for
@mcp zignet - Click Install
- Restart VS Code
Method 2: Manual configuration (available now)
- Install GitHub Copilot extension (if not already installed)
- Open Copilot settings
- Add to MCP servers config:
{
"mcpServers": {
"zignet": {
"command": "npx",
"args": ["-y", "zignet"]
}
}
}
Then restart VS Code and Copilot will have access to ZigNet tools.
</details>
What happens after configuration?
- First use:
npxdownloads and caches ZigNet automatically - Zig compiler: Downloads on-demand (supports Zig 0.13, 0.14, 0.15)
- Tools available:
analyze_zig,compile_zig(+get_zig_docs,suggest_fixcoming soon) - Zero maintenance: Updates automatically via
npx -y zignet
🏗️ Architecture
┌─────────────────────────────────────────────────────┐
│ Claude / MCP Client │
└────────────────────┬────────────────────────────────┘
│ MCP Protocol (JSON-RPC)
┌────────────────────▼────────────────────────────────┐
│ ZigNet MCP Server (TypeScript) │
│ ┌──────────────────────────────────────────────┐ │
│ │ Tool Handlers │ │
│ │ - analyze_zig │ │
│ │ - compile_zig │ │
│ │ - get_zig_docs │ │
│ │ - suggest_fix │ │
│ └─────────────┬────────────────────────────────┘ │
│ ▼ │
│ ┌──────────────────────────────────────────────┐ │
│ │ Zig Compiler Integration │ │
│ │ - zig ast-check (syntax + type validation) │ │
│ │ - zig fmt (official formatter) │ │
│ │ - Auto-detects system Zig installation │ │
│ │ - Falls back to downloading if needed │ │
│ └─────────────┬────────────────────────────────┘ │
│ ▼ │
│ ┌──────────────────────────────────────────────┐ │
│ │ Fine-tuned LLM (Qwen2.5-Coder-7B) │ │
│ │ - Documentation lookup │ │
│ │ - Intelligent suggestions │ │
│ └──────────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────┘
Why this architecture?
- Official Zig compiler (100% accurate, always up-to-date) instead of custom parser
- System integration (uses existing Zig installation if available)
- LLM-powered suggestions (get_zig_docs, suggest_fix) for intelligence
- No external API calls (local inference via node-llama-cpp)
- Fast (< 100ms for validation, < 2s for LLM suggestions)
Note: When Zig releases a new version (e.g., 0.16.0), ZigNet will need to re-train the LLM model on updated documentation and examples.
🧪 Development Status
| Component | Status | Notes |
|---|---|---|
| Zig Compiler Wrapper | ✅ Complete | ast-check + fmt integration |
| System Zig Detection | ✅ Complete | Auto-detects installed Zig versions |
| Multi-version Cache | ✅ Complete | Downloads Zig 0.13-0.15 on demand |
| MCP Server | ✅ Complete | All 4 tools fully implemented |
| LLM Fine-tuning | ✅ Complete | Trained on 13,756 Zig examples |
| get_zig_docs | ✅ Complete | LLM-powered documentation lookup |
| suggest_fix | ✅ Complete | LLM-powered intelligent suggestions |
| GGUF Conversion | ✅ Complete | Q4_K_M quantized (4.4GB) |
| E2E Testing | ✅ Complete | 27/27 tests passing (8.7s) |
| Claude Integration | ⏳ Planned | Final deployment to Claude Desktop |
Current Phase: Ready for deployment - All core features complete
🧪 Testing
Running Tests
# Run all tests (unit + E2E)
pnpm test
# Run only E2E tests
pnpm test tests/e2e/mcp-integration.test.ts
# Run deterministic tests only (no LLM required)
SKIP_LLM_TESTS=1 pnpm test tests/e2e
# Watch mode for development
pnpm test:watch
Test Coverage
E2E Test Suite: 27 tests covering all MCP tools
| Tool | Tests | Type | Pass Rate |
|---|---|---|---|
| analyze_zig | 4 | Deterministic | 100% |
| compile_zig | 3 | Deterministic | 100% |
| get_zig_docs | 5 | LLM-powered | 100% |
| suggest_fix | 5 | LLM-powered | 100% |
| Integration | 3 | Mixed | 100% |
| Performance | 3 | Stress tests | 100% |
| Edge Cases | 4 | Error paths | 100% |
Execution time: 8.7 seconds (without LLM model, deterministic only)
With LLM model: ~60-120 seconds (includes model loading + inference)
Test Behavior
- Deterministic tests (12 tests): Always run, use Zig compiler directly
- LLM tests (15 tests): Auto-skip if model not found, graceful degradation
- CI/CD ready: Runs on GitHub Actions without GPU requirements
For detailed testing guide, see tests/e2e/README.md
📦 Project Structure
zignet/
├── src/
│ ├── config.ts # Environment-based configuration
│ ├── mcp-server.ts # MCP protocol handler
│ ├── zig/
│ │ ├── manager.ts # Multi-version Zig download/cache
│ │ └── executor.ts # zig ast-check + fmt wrapper
│ ├── llm/
│ │ ├── model-downloader.ts # Auto-download GGUF from HuggingFace
│ │ └── session.ts # node-llama-cpp integration
│ └── tools/
│ ├── analyze.ts # analyze_zig tool (COMPLETE)
│ ├── compile.ts # compile_zig tool (COMPLETE)
│ ├── docs.ts # get_zig_docs tool (COMPLETE)
│ └── suggest.ts # suggest_fix tool (COMPLETE)
├── scripts/
│ ├── train-qwen-standard.py # Fine-tuning script (COMPLETE)
│ ├── scrape-zig-repos.js # Dataset collection
│ ├── install-zig.js # Zig version installer
│ └── test-config.cjs # Config system tests
├── data/
│ ├── training/ # 13,756 examples (train/val/test)
│ └── zig-docs/ # Scraped documentation
├── models/
│ └── zignet-qwen-7b/ # Fine-tuned model + LoRA adapters
├── tests/
│ ├── *.test.ts # Unit tests (lexer, parser, etc.)
│ └── e2e/
│ ├── mcp-integration.test.ts # 27 E2E tests
│ └── README.md # Testing guide
├── docs/
│ ├── AGENTS.md # Detailed project spec
│ ├── DEVELOPMENT.md # Development guide
│ └── TESTING.md # Testing documentation
└── README.md # This file
🤖 Model Details
Base Model: Qwen/Qwen2.5-Coder-7B-Instruct
Fine-tuning: QLoRA (4-bit) on 13,756 Zig examples
Dataset: 97% real-world repos (Zig 0.13-0.15), 3% documentation
Training: RTX 3090 (24GB VRAM), 3 epochs, ~8 hours
Output: fulgidus/zignet-qwen2.5-coder-7b (HuggingFace)
Quantization: Q4_K_M (~4GB GGUF for node-llama-cpp)
Why Qwen2.5-Coder-7B?
- Best Zig syntax understanding (benchmarked vs 14 models)
- Modern idioms (comptime, generics, error handling)
- Fast inference (~15-20s per query post-quantization)
📊 Benchmarks
| Model | Pass Rate | Avg Time | Quality | Notes |
|---|---|---|---|---|
| Qwen2.5-Coder-7B | 100% | 29.58s | ⭐⭐⭐⭐⭐ | SELECTED - Best idioms |
| DeepSeek-Coder-6.7B | 100% | 27.86s | ⭐⭐⭐⭐⭐ | Didactic, verbose |
| Llama3.2-3B | 100% | 12.27s | ⭐⭐⭐⭐ | Good balance |
| CodeLlama-7B | 100% | 24.61s | ⭐⭐⭐ | Confuses Zig/Rust |
| Qwen2.5-Coder-0.5B | 100% | 3.94s | ❌ | Invents syntax |
Full benchmarks: scripts/test-results/
🛠️ Development
# Run tests
pnpm test
# Run specific component tests
pnpm test -- lexer
pnpm test -- parser
pnpm test -- type-checker
# Watch mode
pnpm test:watch
# Linting
pnpm lint
pnpm lint:fix
# Build
pnpm build
🤝 Contributing
See AGENTS.md for detailed project specification and development phases.
Current needs:
- Testing on diverse Zig codebases
- Edge case discovery (parser/type-checker)
- Performance optimization
- Documentation improvements
📄 License
WTFPL v2 — Do What The Fuck You Want To Public License
🔗 Links
- Repository: https://github.com/fulgidus/zignet
- Model (post-training): https://huggingface.co/fulgidus/zignet-qwen2.5-coder-7b
- MCP Protocol: https://modelcontextprotocol.io
- Zig Language: https://ziglang.org
Status: ✅ Phase 4 Complete - Ready for deployment (fine-tuning complete, E2E tests passing)
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。