Zillow MCP Server

Zillow MCP Server

A Model Context Protocol server that provides real-time access to Zillow real estate data, enabling property search, detailed information retrieval, Zestimates, market trends analysis, and mortgage calculations.

Category
访问服务器

README

README.md - Zillow MCP Server

A Model Context Protocol (MCP) server that provides real-time access to Zillow real estate data, built with Python and FastMCP.

Features

  • 🏠 Property Search: Search for properties by location, price range, and property features
  • 💰 Property Details: Get detailed information about specific properties
  • 📊 Zestimates: Access Zillow's proprietary home valuation data
  • 📈 Market Trends: View real estate market trends for any location
  • 🧮 Mortgage Calculator: Calculate mortgage payments based on various inputs
  • 🔍 Health Check: Verify API connectivity and monitor performance

Requirements

  • Python 3.8 or higher
  • A Zillow Bridge API key (request access at api@bridgeinteractive.com)

Installation

  1. Clone this repository:
git clone https://github.com/rohitsingh-iitd/zillow-mcp-server
cd zillow-mcp-server
  1. Install the dependencies:
pip install -r requirements.txt
  1. Create a .env file with your Zillow API key:
ZILLOW_API_KEY=your_zillow_api_key_here

Usage

Run the server with options:

# Standard stdio mode (for Claude Desktop)
python zillow_mcp_server.py

# HTTP server mode (for remote access)
python zillow_mcp_server.py --http --port 8000

# Debug mode for more verbose logging
python zillow_mcp_server.py --debug

You can also run the server using Docker:

# Build the Docker image
docker build -t zillow-mcp-server .

# Run with environment variables
docker run -p 8000:8000 -e ZILLOW_API_KEY=your_key_here zillow-mcp-server

# Or using an env file
docker run -p 8000:8000 --env-file .env zillow-mcp-server

Usage with Claude Desktop

Add the Zillow MCP server to your Claude Desktop configuration file:

  • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
  • Windows: %APPDATA%\Claude\claude_desktop_config.json
{
  "mcpServers": {
    "zillow": {
      "command": "python",
      "args": ["/path/to/zillow_mcp_server.py"]
    }
  }
}

For remote HTTP server:

{
  "mcpServers": {
    "zillow-remote": {
      "command": "npx",
      "args": ["mcp-remote", "https://your-mcp-server-url.com/sse"]
    }
  }
}

Available Tools

search_properties

Search for properties based on various criteria:

search_properties(
    location: str,
    type: str = "forSale",
    min_price: Optional[int] = None,
    max_price: Optional[int] = None,
    beds_min: Optional[int] = None,
    beds_max: Optional[int] = None,
    baths_min: Optional[float] = None,
    baths_max: Optional[float] = None,
    home_types: Optional[List[str]] = None
)

Example usage in Claude:

Please search for properties in Seattle with prices between $500,000 and $800,000.

get_property_details

Get detailed information about a specific property:

get_property_details(
    property_id: str = None,
    address: str = None
)

Example usage in Claude:

Can you get the details for the property with ID 12345?

get_zestimate

Get Zillow's estimated value for a property:

get_zestimate(
    property_id: str = None,
    address: str = None
)

Example usage in Claude:

What's the Zestimate for 123 Main St, Seattle, WA?

get_market_trends

Get real estate market trends for a specific location:

get_market_trends(
    location: str,
    metrics: List[str] = ["median_list_price", "median_sale_price", "median_days_on_market"],
    time_period: str = "1year"
)

Example usage in Claude:

What are the current real estate trends in Boston over the past year?

calculate_mortgage

Calculate mortgage payments and related costs:

calculate_mortgage(
    home_price: int,
    down_payment: int = None,
    down_payment_percent: float = None,
    loan_term: int = 30,
    interest_rate: float = 6.5,
    annual_property_tax: int = None,
    annual_homeowners_insurance: int = None,
    monthly_hoa: int = 0,
    include_pmi: bool = True
)

Example usage in Claude:

Calculate the monthly mortgage payment for a $600,000 house with 20% down and a 6% interest rate.

check_health

Verify the Zillow API connection and get server status:

check_health()

Example usage in Claude:

Please check if the Zillow API is currently responsive.

get_server_tools

Get a list of all available tools on this server:

get_server_tools()

Example usage in Claude:

What tools are available in the Zillow MCP server?

Resources

Get property information as a formatted text resource:

zillow://property/{property_id}

Get market trends information as a formatted text resource:

zillow://market-trends/{location}

Error Handling

The server implements robust error handling with:

  • Automatic retries with exponential backoff
  • Detailed error logging
  • Rate limit handling
  • Connection timeouts
  • Graceful degradation

Technical Details

This MCP server is built using:

  • FastMCP: A Pythonic framework for building Model Context Protocol servers
  • Requests: For making HTTP requests to the Zillow Bridge API with connection pooling and retries
  • Backoff: For implementing exponential backoff retry logic
  • python-dotenv: For managing environment variables

The server provides both tools (interactive functions) and resources (static data) that Claude can access to provide real estate information to users.

Limitations and Considerations

  • Zillow's API has usage limits (typically 1,000 requests per day per dataset)
  • Zillow's terms of service prohibit storing data locally; all requests must be dynamic
  • You must properly attribute data to Zillow in the user interface
  • The Bridge API functionality may change over time, requiring server updates

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgments

  • Zillow for providing the Bridge API
  • Anthropic for the Model Context Protocol specification

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选