Dify

Dify

Dify is an open-source LLM app development platform. Dify's intuitive interface combines AI workflow, RAG pipeline, agent capabilities, model management, observability features and more, letting you quickly go from prototype to production. - weloyun/dify

远程shell执行
AI记忆系统
高级AI推理
数据与应用分析
访问服务器

README

cover-v5-optimized

<p align="center"> 📌 <a href="https://dify.ai/blog/introducing-dify-workflow-file-upload-a-demo-on-ai-podcast">Introducing Dify Workflow File Upload: Recreate Google NotebookLM Podcast</a> </p>

<p align="center"> <a href="https://cloud.dify.ai">Dify Cloud</a> · <a href="https://docs.dify.ai/getting-started/install-self-hosted">Self-hosting</a> · <a href="https://docs.dify.ai">Documentation</a> · <a href="https://udify.app/chat/22L1zSxg6yW1cWQg">Enterprise inquiry</a> </p>

<p align="center"> <a href="https://dify.ai" target="_blank"> <img alt="Static Badge" src="https://img.shields.io/badge/Product-F04438"></a> <a href="https://dify.ai/pricing" target="_blank"> <img alt="Static Badge" src="https://img.shields.io/badge/free-pricing?logo=free&color=%20%23155EEF&label=pricing&labelColor=%20%23528bff"></a> <a href="https://discord.gg/FngNHpbcY7" target="_blank"> <img src="https://img.shields.io/discord/1082486657678311454?logo=discord&labelColor=%20%235462eb&logoColor=%20%23f5f5f5&color=%20%235462eb" alt="chat on Discord"></a> <a href="https://reddit.com/r/difyai" target="_blank">
<img src="https://img.shields.io/reddit/subreddit-subscribers/difyai?style=plastic&logo=reddit&label=r%2Fdifyai&labelColor=white" alt="join Reddit"></a> <a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank"> <img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5" alt="follow on X(Twitter)"></a> <a href="https://www.linkedin.com/company/langgenius/" target="_blank"> <img src="https://custom-icon-badges.demolab.com/badge/LinkedIn-0A66C2?logo=linkedin-white&logoColor=fff" alt="follow on LinkedIn"></a> <a href="https://hub.docker.com/u/langgenius" target="_blank"> <img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a> <a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank"> <img alt="Commits last month" src="https://img.shields.io/github/commit-activity/m/langgenius/dify?labelColor=%20%2332b583&color=%20%2312b76a"></a> <a href="https://github.com/langgenius/dify/" target="_blank"> <img alt="Issues closed" src="https://img.shields.io/github/issues-search?query=repo%3Alanggenius%2Fdify%20is%3Aclosed&label=issues%20closed&labelColor=%20%237d89b0&color=%20%235d6b98"></a> <a href="https://github.com/langgenius/dify/discussions/" target="_blank"> <img alt="Discussion posts" src="https://img.shields.io/github/discussions/langgenius/dify?labelColor=%20%239b8afb&color=%20%237a5af8"></a> </p>

<p align="center"> <a href="./README.md"><img alt="README in English" src="https://img.shields.io/badge/English-d9d9d9"></a> <a href="./README_CN.md"><img alt="简体中文版自述文件" src="https://img.shields.io/badge/简体中文-d9d9d9"></a> <a href="./README_JA.md"><img alt="日本語のREADME" src="https://img.shields.io/badge/日本語-d9d9d9"></a> <a href="./README_ES.md"><img alt="README en Español" src="https://img.shields.io/badge/Español-d9d9d9"></a> <a href="./README_FR.md"><img alt="README en Français" src="https://img.shields.io/badge/Français-d9d9d9"></a> <a href="./README_KL.md"><img alt="README tlhIngan Hol" src="https://img.shields.io/badge/Klingon-d9d9d9"></a> <a href="./README_KR.md"><img alt="README in Korean" src="https://img.shields.io/badge/한국어-d9d9d9"></a> <a href="./README_AR.md"><img alt="README بالعربية" src="https://img.shields.io/badge/العربية-d9d9d9"></a> <a href="./README_TR.md"><img alt="Türkçe README" src="https://img.shields.io/badge/Türkçe-d9d9d9"></a> <a href="./README_VI.md"><img alt="README Tiếng Việt" src="https://img.shields.io/badge/Ti%E1%BA%BFng%20Vi%E1%BB%87t-d9d9d9"></a> <a href="./README_DE.md"><img alt="README in Deutsch" src="https://img.shields.io/badge/German-d9d9d9"></a> </p>

Dify is an open-source LLM app development platform. Its intuitive interface combines agentic AI workflow, RAG pipeline, agent capabilities, model management, observability features and more, letting you quickly go from prototype to production.

Quick start

Before installing Dify, make sure your machine meets the following minimum system requirements:

  • CPU >= 2 Core
  • RAM >= 4 GiB

</br>

The easiest way to start the Dify server is through docker compose. Before running Dify with the following commands, make sure that Docker and Docker Compose are installed on your machine:

cd dify
cd docker
cp .env.example .env
docker compose up -d

After running, you can access the Dify dashboard in your browser at http://localhost/install and start the initialization process.

Seeking help

Please refer to our FAQ if you encounter problems setting up Dify. Reach out to the community and us if you are still having issues.

If you'd like to contribute to Dify or do additional development, refer to our guide to deploying from source code

Key features

1. Workflow: Build and test powerful AI workflows on a visual canvas, leveraging all the following features and beyond.

https://github.com/langgenius/dify/assets/13230914/356df23e-1604-483d-80a6-9517ece318aa

2. Comprehensive model support: Seamless integration with hundreds of proprietary / open-source LLMs from dozens of inference providers and self-hosted solutions, covering GPT, Mistral, Llama3, and any OpenAI API-compatible models. A full list of supported model providers can be found here.

providers-v5

3. Prompt IDE: Intuitive interface for crafting prompts, comparing model performance, and adding additional features such as text-to-speech to a chat-based app.

4. RAG Pipeline: Extensive RAG capabilities that cover everything from document ingestion to retrieval, with out-of-box support for text extraction from PDFs, PPTs, and other common document formats.

5. Agent capabilities: You can define agents based on LLM Function Calling or ReAct, and add pre-built or custom tools for the agent. Dify provides 50+ built-in tools for AI agents, such as Google Search, DALL·E, Stable Diffusion and WolframAlpha.

6. LLMOps: Monitor and analyze application logs and performance over time. You could continuously improve prompts, datasets, and models based on production data and annotations.

7. Backend-as-a-Service: All of Dify's offerings come with corresponding APIs, so you could effortlessly integrate Dify into your own business logic.

Feature Comparison

<table style="width: 100%;"> <tr> <th align="center">Feature</th> <th align="center">Dify.AI</th> <th align="center">LangChain</th> <th align="center">Flowise</th> <th align="center">OpenAI Assistants API</th> </tr> <tr> <td align="center">Programming Approach</td> <td align="center">API + App-oriented</td> <td align="center">Python Code</td> <td align="center">App-oriented</td> <td align="center">API-oriented</td> </tr> <tr> <td align="center">Supported LLMs</td> <td align="center">Rich Variety</td> <td align="center">Rich Variety</td> <td align="center">Rich Variety</td> <td align="center">OpenAI-only</td> </tr> <tr> <td align="center">RAG Engine</td> <td align="center">✅</td> <td align="center">✅</td> <td align="center">✅</td> <td align="center">✅</td> </tr> <tr> <td align="center">Agent</td> <td align="center">✅</td> <td align="center">✅</td> <td align="center">❌</td> <td align="center">✅</td> </tr> <tr> <td align="center">Workflow</td> <td align="center">✅</td> <td align="center">❌</td> <td align="center">✅</td> <td align="center">❌</td> </tr> <tr> <td align="center">Observability</td> <td align="center">✅</td> <td align="center">✅</td> <td align="center">❌</td> <td align="center">❌</td> </tr> <tr> <td align="center">Enterprise Feature (SSO/Access control)</td> <td align="center">✅</td> <td align="center">❌</td> <td align="center">❌</td> <td align="center">❌</td> </tr> <tr> <td align="center">Local Deployment</td> <td align="center">✅</td> <td align="center">✅</td> <td align="center">✅</td> <td align="center">❌</td> </tr> </table>

Using Dify

  • Cloud </br> We host a Dify Cloud service for anyone to try with zero setup. It provides all the capabilities of the self-deployed version, and includes 200 free GPT-4 calls in the sandbox plan.

  • Self-hosting Dify Community Edition</br> Quickly get Dify running in your environment with this starter guide. Use our documentation for further references and more in-depth instructions.

  • Dify for enterprise / organizations</br> We provide additional enterprise-centric features. Log your questions for us through this chatbot or send us an email to discuss enterprise needs. </br>

    For startups and small businesses using AWS, check out Dify Premium on AWS Marketplace and deploy it to your own AWS VPC with one-click. It's an affordable AMI offering with the option to create apps with custom logo and branding.

Staying ahead

Star Dify on GitHub and be instantly notified of new releases.

star-us

Advanced Setup

If you need to customize the configuration, please refer to the comments in our .env.example file and update the corresponding values in your .env file. Additionally, you might need to make adjustments to the docker-compose.yaml file itself, such as changing image versions, port mappings, or volume mounts, based on your specific deployment environment and requirements. After making any changes, please re-run docker-compose up -d. You can find the full list of available environment variables here.

If you'd like to configure a highly-available setup, there are community-contributed Helm Charts and YAML files which allow Dify to be deployed on Kubernetes.

Using Terraform for Deployment

Deploy Dify to Cloud Platform with a single click using terraform

Azure Global
Google Cloud

Using AWS CDK for Deployment

Deploy Dify to AWS with CDK

AWS

Contributing

For those who'd like to contribute code, see our Contribution Guide. At the same time, please consider supporting Dify by sharing it on social media and at events and conferences.

We are looking for contributors to help with translating Dify to languages other than Mandarin or English. If you are interested in helping, please see the i18n README for more information, and leave us a comment in the global-users channel of our Discord Community Server.

Community & contact

  • Github Discussion. Best for: sharing feedback and asking questions.
  • GitHub Issues. Best for: bugs you encounter using Dify.AI, and feature proposals. See our Contribution Guide.
  • Discord. Best for: sharing your applications and hanging out with the community.
  • X(Twitter). Best for: sharing your applications and hanging out with the community.

Contributors

<a href="https://github.com/langgenius/dify/graphs/contributors"> <img src="https://contrib.rocks/image?repo=langgenius/dify" /> </a>

Star history

Star History Chart

Security disclosure

To protect your privacy, please avoid posting security issues on GitHub. Instead, send your questions to security@dify.ai and we will provide you with a more detailed answer.

License

This repository is available under the Dify Open Source License, which is essentially Apache 2.0 with a few additional restrictions.

推荐服务器

VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
mcp-server-qdrant

mcp-server-qdrant

这个仓库展示了如何为向量搜索引擎 Qdrant 创建一个 MCP (Managed Control Plane) 服务器的示例。

官方
精选
AIO-MCP Server

AIO-MCP Server

🚀 All-in-one MCP server with AI search, RAG, and multi-service integrations (GitLab/Jira/Confluence/YouTube) for AI-enhanced development workflows. Folk from

精选
本地
Knowledge Graph Memory Server

Knowledge Graph Memory Server

为 Claude 实现持久性记忆,使用本地知识图谱,允许 AI 记住用户的信息,并可在自定义位置存储,跨对话保持记忆。

精选
本地
Hyperbrowser

Hyperbrowser

欢迎来到 Hyperbrowser,人工智能的互联网。Hyperbrowser 是下一代平台,旨在增强人工智能代理的能力,并实现轻松、可扩展的浏览器自动化。它专为人工智能开发者打造,消除了本地基础设施和性能瓶颈带来的麻烦,让您能够:

精选
本地
https://github.com/Streen9/react-mcp

https://github.com/Streen9/react-mcp

react-mcp 与 Claude Desktop 集成,能够根据用户提示创建和修改 React 应用程序。

精选
本地
any-chat-completions-mcp

any-chat-completions-mcp

将 Claude 与任何 OpenAI SDK 兼容的聊天完成 API 集成 - OpenAI、Perplexity、Groq、xAI、PyroPrompts 等。

精选
Exa MCP Server

Exa MCP Server

一个模型上下文协议服务器,它使像 Claude 这样的人工智能助手能够以安全和受控的方式,使用 Exa AI 搜索 API 执行实时网络搜索。

精选
BigQuery MCP Server

BigQuery MCP Server

这是一个服务器,可以让你的大型语言模型(LLM,比如Claude)直接与你的BigQuery数据对话!可以把它想象成一个友好的翻译器,它位于你的AI助手和数据库之间,确保它们可以安全高效地进行交流。

精选