DigitalFate

DigitalFate

DigitalFate provides an advanced, enterprise-ready framework for orchestrating LLM calls, agents, and computer-based tasks, - Kalyankensin/DigitalFate

数据库交互
访问服务器

README

banner

What is DigitalFate?

DigitalFate provides an advanced, enterprise-ready framework for orchestrating LLM calls, agents, and computer-based tasks in a cost-efficient manner. It delivers reliable systems, scalability, and a task-oriented architecture to handle real-world applications effectively.

Key Features:

  • Scalable for Production: Effortlessly deploy on AWS, GCP, or locally via Docker.
  • Task-Focused Architecture: Execute tasks at varying levels of complexity:
    • Simple tasks through LLM calls.
    • Intermediate tasks using V1 agents.
    • Advanced automation with V2 agents and MCP integration.
  • MCP Server Compatibility: Leverage multi-client processing for high-performance operations.
  • Secure Tool-Calling Server: Manage tools with robust API interactions.
  • Computer Use Integration: Perform human-like tasks with Anthropic's ‘Computer Use’ capabilities.
  • Easy Tool Integration: Add custom or MCP tools with a single line of code.
  • Client-Server Architecture: A stateless, enterprise-ready system designed for production.

<br> <br>

🛠️ Getting Started

Prerequisites

  • Python 3.10 or newer
  • OpenAI or Anthropic API keys (supports Azure and Bedrock)

Installation

pip install digitalfate

Basic Example

from digitalfate import digitalfateClient, ObjectResponse, Task, AgentConfiguration
from digitalfate.client.tools import Search

# Initialize Client and Configure
client = digitalfateClient("localserver")
client.set_config("OPENAI_API_KEY", "YOUR_API_KEY")

# Define Task and Agent
task1 = Task(description="Research latest news in Anthropic and OpenAI", tools=[Search])

product_manager_agent = AgentConfiguration(
    job_title="Product Manager",
    company_url="https://digitalfate.ai",
    company_objective="To build an AI agent framework that helps people accomplish tasks",
)

# Execute Task with Agent
client.agent(product_manager_agent, task1)

result = task1.response

print(result)

Advanced Example

from digitalfate import digitalfateClient, ObjectResponse, Task, AgentConfiguration
from digitalfate.client.tools import Search

# Create a DigitalFate client instance
client = digitalfateClient("localserver")
client.set_config("OPENAI_API_KEY", "YOUR_API_KEY")
client.default_llm_model = "openai/gpt-4o"

# DeepSeek Chat

client.set_config("DEEPSEEK_API_KEY", "YOUR_DEEPSEEK_API_KEY")
client.default_llm_model = "deepseek/deepseek-chat"

# Claude-3.5-Sonnet

client.set_config("ANTHROPIC_API_KEY", "YOUR_ANTHROPIC_API_KEY")
client.default_llm_model = "claude/claude-3-5-sonnet"

# GPT 4o on Azure
client.set_config("ANTHROPIC_API_KEY", "YOUR_ANTHROPIC_API_KEY")
client.default_llm_model = "claude/claude-3-5-sonnet"

# Claude 3.5 Sonnet on AWS
client.set_config("AWS_ACCESS_KEY_ID", "YOUR_AWS_ACCESS_KEY_ID")
client.set_config("AWS_SECRET_ACCESS_KEY", "YOUR_AWS_SECRET_ACCESS_KEY")
client.set_config("AWS_REGION", "YOUR_AWS_REGION")
client.default_llm_model = "bedrock/claude-3-5-sonnet"

Task Definition

Tasks are defined by their descriptions. High-level tasks are broken into manageable sub-tasks automatically. For example, the task "Research latest news in Anthropic and OpenAI" may result in subtasks like:

"Search for Anthropic and OpenAI news on Google." "Read relevant blogs." "Review official announcements."

Define Task Description

description = "Research latest news in Anthropic and OpenAI"

Task Execution

Combine agents and tasks, then run them using the DigitalFate server. This approach simplifies task execution in SaaS applications or vertical AI systems.

client.agent(product_manager_agent, task1)

result = task1.response

for item in result.news_list:
    print("\nNews")
    print("Title: ", item.title)
    print("Body: ", item.body)
    print("URL: ", item.url)
    print("Tags: ", item.tags)

<br> <br>

Additional Features (Beta)

Single LLM Call

Optimize cost and latency by deciding when to directly call an LLM instead of deploying agents.

client.call(task1)

Memory System

Enable personalized, context-aware interactions by leveraging memory settings in AgentConfiguration.

product_manager_agent = AgentConfiguration(
    agent_id="product_manager_agent",
    memory=True,
)

Knowledge Base

Provide agents with context through private or public content, such as PDFs or URLs.

from digitalfate import KnowledgeBase

kb = KnowledgeBase(files=["sample.pdf", "https://digitalfate.ai"])

task1 = Task(context=[kb])

Task Chaining

Link tasks together by using the output of one as the input for another.

task2 = Task(context=[task1])

Multi-Agent Collaboration

Distribute tasks across multiple agents for collaborative problem-solving.

client.multi_agent([agent1, agent2], [task1, task2])

Human-Like Agents

Configure agents with names and contact information for tasks requiring personal interaction.

product_manager_agent = AgentConfiguration(
    name="John Walk",
    contact="john@digitalfate.ai",
)

Computer Use

Perform tasks that require human-like interactions, such as mouse movements and clicks.

from digitalfate.client.tools import ComputerUse

tools = [ComputerUse]

Reflection Mechanism

Ensure high-quality outputs by validating results and providing feedback for improvements.

product_manager_agent = AgentConfiguration(
    reflection=True,
)

Context Compression

Handle context overflow scenarios by compressing system messages and inputs automatically.

product_manager_agent = AgentConfiguration(
    compress_context=True,
)

Telemetry

Disable anonymous telemetry by setting an environment variable.

import os
os.environ["digitalfate_TELEMETRY"] = "False"

License

DigitalFate is licensed under the MIT License. See the full license text below:


MIT License

Copyright (c) 2025 DigitalFate

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.


推荐服务器

Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选
AIO-MCP Server

AIO-MCP Server

🚀 集成了 AI 搜索、RAG 和多服务(GitLab/Jira/Confluence/YouTube)的一体化 MCP 服务器,旨在增强 AI 驱动的开发工作流程。来自 Folk。

精选
本地
Knowledge Graph Memory Server

Knowledge Graph Memory Server

为 Claude 实现持久性记忆,使用本地知识图谱,允许 AI 记住用户的信息,并可在自定义位置存储,跨对话保持记忆。

精选
本地
Hyperbrowser

Hyperbrowser

欢迎来到 Hyperbrowser,人工智能的互联网。Hyperbrowser 是下一代平台,旨在增强人工智能代理的能力,并实现轻松、可扩展的浏览器自动化。它专为人工智能开发者打造,消除了本地基础设施和性能瓶颈带来的麻烦,让您能够:

精选
本地
any-chat-completions-mcp

any-chat-completions-mcp

将 Claude 与任何 OpenAI SDK 兼容的聊天完成 API 集成 - OpenAI、Perplexity、Groq、xAI、PyroPrompts 等。

精选
Exa MCP Server

Exa MCP Server

一个模型上下文协议服务器,它使像 Claude 这样的人工智能助手能够以安全和受控的方式,使用 Exa AI 搜索 API 执行实时网络搜索。

精选
BigQuery MCP Server

BigQuery MCP Server

这是一个服务器,可以让你的大型语言模型(LLM,比如Claude)直接与你的BigQuery数据对话!可以把它想象成一个友好的翻译器,它位于你的AI助手和数据库之间,确保它们可以安全高效地进行交流。

精选
mcp-perplexity

mcp-perplexity

Perplexity API 的 MCP 服务器。

精选
MCP Web Research Server

MCP Web Research Server

一个模型上下文协议服务器,使 Claude 能够通过集成 Google 搜索、提取网页内容和捕获屏幕截图来进行网络研究。

精选