Google Scholar MCP Server

Google Scholar MCP Server

shiwenbin1617

研究与数据
访问服务器

README

Google Scholar MCP Server

smithery badge

🔍 Enable AI assistants to search and access Google Scholar papers through a simple MCP interface.

The Google Scholar MCP Server provides a bridge between AI assistants and Google Scholar through the Model Context Protocol (MCP). It allows AI models to search for academic papers and access their content in a programmatic way.

✨ Core Features

  • 🔎 Paper Search: Query Google Scholar papers with custom search strings or advanced search parameters ✅
  • 🚀 Efficient Retrieval: Fast access to paper metadata ✅
  • 👤 Author Information: Retrieve detailed information about authors ✅
  • 📊 Research Support: Facilitate academic research and analysis ✅

🚀 Quick Start

Installing Manually

Installing via Smithery

To install google-scholar Server for Claude Desktop automatically via Smithery:

claude

npx -y @smithery/cli@latest install @JackKuo666/google-scholar-mcp-server --client claude --config "{}"

Cursor

Paste the following into Settings → Cursor Settings → MCP → Add new server:

  • Mac/Linux
npx -y @smithery/cli@latest run @JackKuo666/google-scholar-mcp-server --client cursor --config "{}" 

Windsurf

npx -y @smithery/cli@latest install @JackKuo666/google-scholar-mcp-server --client windsurf --config "{}"

CLine

npx -y @smithery/cli@latest install @JackKuo666/google-scholar-mcp-server --client cline --config "{}"
  1. Clone the repository:

    git clone https://github.com/JackKuo666/google-scholar-MCP-Server.git
    cd google-scholar-MCP-Server
    
  2. Install the required dependencies:

    pip install -r requirements.txt
    

For development:

# Clone and set up development environment
git clone https://github.com/JackKuo666/Google-Scholar-MCP-Server.git
cd Google-Scholar-MCP-Server

# Create and activate virtual environment
python -m venv venv
source venv/bin/activate  # On Windows use `venv\Scripts\activate`

# Install dependencies
pip install -r requirements.txt

📊 Usage

Start the MCP server:

python google_scholar_server.py

Once the server is running, you can use the provided MCP tools in your AI assistant or application. Here are some examples of how to use the tools:

Example 1: Search for papers using keywords

result = await mcp.use_tool("search_google_scholar_key_words", {
    "query": "artificial intelligence ethics",
    "num_results": 5
})
print(result)

Example 2: Perform an advanced search

result = await mcp.use_tool("search_google_scholar_advanced", {
    "query": "machine learning",
    "author": "Hinton",
    "year_range": [2020, 2023],
    "num_results": 3
})
print(result)

Example 3: Get author information

result = await mcp.use_tool("get_author_info", {
    "author_name": "Geoffrey Hinton"
})
print(result)

These examples demonstrate how to use the three main tools provided by the Google Scholar MCP Server. Adjust the parameters as needed for your specific use case.

Usage with Claude Desktop

Add this configuration to your claude_desktop_config.json:

(Mac OS)

{
  "mcpServers": {
    "google-scholar": {
      "command": "python",
      "args": ["-m", "google_scholar_mcp_server"]
      }
  }
}

(Windows version):

{
  "mcpServers": {
    "google-scholar": {
      "command": "C:\\Users\\YOUR\\PATH\\miniconda3\\envs\\mcp_server\\python.exe",
      "args": [
        "D:\\code\\YOUR\\PATH\\Google-Scholar-MCP-Server\\google_scholar_server.py"
      ],
      "env": {},
      "disabled": false,
      "autoApprove": []
    }
  }
}

Using with Cline

{
  "mcpServers": {
    "google-scholar": {
      "command": "bash",
      "args": [
        "-c",
        "source /home/YOUR/PATH/.venv/bin/activate && python /home/YOUR/PATH/google_scholar_mcp_server.py"
      ],
      "env": {},
      "disabled": false,
      "autoApprove": []
    }
  }
}

🛠 MCP Tools

The Google Scholar MCP Server provides the following tools:

search_google_scholar_key_words

Search for articles on Google Scholar using key words.

Parameters:

  • query (str): Search query string
  • num_results (int, optional): Number of results to return (default: 5)

Returns: List of dictionaries containing article information

search_google_scholar_advanced

Perform an advanced search for articles on Google Scholar.

Parameters:

  • query (str): General search query
  • author (str, optional): Author name
  • year_range (tuple, optional): Tuple containing (start_year, end_year)
  • num_results (int, optional): Number of results to return (default: 5)

Returns: List of dictionaries containing article information

get_author_info

Get detailed information about an author from Google Scholar.

Parameters:

  • author_name (str): Name of the author to search for

Returns: Dictionary containing author information

📁 Project Structure

  • google_scholar_server.py: The main MCP server implementation using FastMCP
  • google_scholar_web_search.py: Contains the web scraping logic for searching Google Scholar

🔧 Dependencies

  • Python 3.10+
  • mcp[cli]>=1.4.1
  • scholarly>=1.7.0
  • asyncio>=3.4.3

You can install the required dependencies using:

pip install -r requirements.txt

🤝 Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

📄 License

This project is licensed under the MIT License.

⚠️ Disclaimer

This tool is for research purposes only. Please respect Google Scholar's terms of service and use this tool responsibly.

推荐服务器

Crypto Price & Market Analysis MCP Server

Crypto Price & Market Analysis MCP Server

一个模型上下文协议 (MCP) 服务器,它使用 CoinCap API 提供全面的加密货币分析。该服务器通过一个易于使用的界面提供实时价格数据、市场分析和历史趋势。 (Alternative, slightly more formal and technical translation): 一个模型上下文协议 (MCP) 服务器,利用 CoinCap API 提供全面的加密货币分析服务。该服务器通过用户友好的界面,提供实时价格数据、市场分析以及历史趋势数据。

精选
TypeScript
MCP PubMed Search

MCP PubMed Search

用于搜索 PubMed 的服务器(PubMed 是一个免费的在线数据库,用户可以在其中搜索生物医学和生命科学文献)。 我是在 MCP 发布当天创建的,但当时正在度假。 我看到有人在您的数据库中发布了类似的服务器,但还是决定发布我的。

精选
Python
mixpanel

mixpanel

连接到您的 Mixpanel 数据。从 Mixpanel 分析查询事件、留存和漏斗数据。

精选
TypeScript
Sequential Thinking MCP Server

Sequential Thinking MCP Server

这个服务器通过将复杂问题分解为顺序步骤来促进结构化的问题解决,支持修订,并通过完整的 MCP 集成来实现多条解决方案路径。

精选
Python
Nefino MCP Server

Nefino MCP Server

为大型语言模型提供访问德国可再生能源项目新闻和信息的能力,允许按地点、主题(太阳能、风能、氢能)和日期范围进行筛选。

官方
Python
Vectorize

Vectorize

将 MCP 服务器向量化以实现高级检索、私有深度研究、Anything-to-Markdown 文件提取和文本分块。

官方
JavaScript
Mathematica Documentation MCP server

Mathematica Documentation MCP server

一个服务器,通过 FastMCP 提供对 Mathematica 文档的访问,使用户能够从 Wolfram Mathematica 检索函数文档和列出软件包符号。

本地
Python
kb-mcp-server

kb-mcp-server

一个 MCP 服务器,旨在实现便携性、本地化、简易性和便利性,以支持对 txtai “all in one” 嵌入数据库进行基于语义/图的检索。任何 tar.gz 格式的 txtai 嵌入数据库都可以被加载。

本地
Python
Research MCP Server

Research MCP Server

这个服务器用作 MCP 服务器,与 Notion 交互以检索和创建调查数据,并与 Claude Desktop Client 集成以进行和审查调查。

本地
Python
Cryo MCP Server

Cryo MCP Server

一个API服务器,实现了模型补全协议(MCP),用于Cryo区块链数据提取。它允许用户通过任何兼容MCP的客户端查询以太坊区块链数据。

本地
Python