Vectorize

Vectorize
官方

将 MCP 服务器向量化以实现高级检索、私有深度研究、Anything-to-Markdown 文件提取和文本分块。

搜索
研究与数据
访问服务器

Tools

retrieve

Retrieve documents from a Vectorize pipeline.

extract

Perform text extraction and chunking on a document.

deep-research

Generate a deep research on a Vectorize pipeline.

README

Vectorize MCP 服务器

一个模型上下文协议 (MCP) 服务器实现,集成了 Vectorize,用于高级向量检索和文本提取。

<a href="https://glama.ai/mcp/servers/pxwbgk0kzr"> <img width="380" height="200" src="https://glama.ai/mcp/servers/pxwbgk0kzr/badge" alt="Vectorize MCP server" /> </a>

安装

使用 npx 运行

export VECTORIZE_ORG_ID=YOUR_ORG_ID
export VECTORIZE_TOKEN=YOUR_TOKEN
export VECTORIZE_PIPELINE_ID=YOUR_PIPELINE_ID

npx -y @vectorize-io/vectorize-mcp-server@latest

VS Code 安装

要一键安装,请单击下面的安装按钮之一:

Install with NPX in VS Code Install with NPX in VS Code Insiders

手动安装

为了最快的安装速度,请使用本节顶部的“一键安装”按钮。

要手动安装,请将以下 JSON 代码块添加到 VS Code 中的 User Settings (JSON) 文件。 您可以通过按 Ctrl + Shift + P 并键入 Preferences: Open User Settings (JSON) 来执行此操作。

{
  "mcp": {
    "inputs": [
      {
        "type": "promptString",
        "id": "org_id",
        "description": "Vectorize Organization ID"
      },
      {
        "type": "promptString",
        "id": "token",
        "description": "Vectorize Token",
        "password": true
      },
      {
        "type": "promptString",
        "id": "pipeline_id",
        "description": "Vectorize Pipeline ID"
      }
    ],
    "servers": {
      "vectorize": {
        "command": "npx",
        "args": ["-y", "@vectorize-io/vectorize-mcp-server@latest"],
        "env": {
          "VECTORIZE_ORG_ID": "${input:org_id}",
          "VECTORIZE_TOKEN": "${input:token}",
          "VECTORIZE_PIPELINE_ID": "${input:pipeline_id}"
        }
      }
    }
  }
}

(可选)您可以将以下内容添加到工作区中名为 .vscode/mcp.json 的文件中,以与他人共享配置:

{
  "inputs": [
    {
      "type": "promptString",
      "id": "org_id",
      "description": "Vectorize Organization ID"
    },
    {
      "type": "promptString",
      "id": "token",
      "description": "Vectorize Token",
      "password": true
    },
    {
      "type": "promptString",
      "id": "pipeline_id",
      "description": "Vectorize Pipeline ID"
    }
  ],
  "servers": {
    "vectorize": {
      "command": "npx",
      "args": ["-y", "@vectorize-io/vectorize-mcp-server@latest"],
      "env": {
        "VECTORIZE_ORG_ID": "${input:org_id}",
        "VECTORIZE_TOKEN": "${input:token}",
        "VECTORIZE_PIPELINE_ID": "${input:pipeline_id}"
      }
    }
  }
}

在 Claude/Windsurf/Cursor/Cline 上的配置

{
  "mcpServers": {
    "vectorize": {
      "command": "npx",
      "args": ["-y", "@vectorize-io/vectorize-mcp-server@latest"],
      "env": {
        "VECTORIZE_ORG_ID": "your-org-id",
        "VECTORIZE_TOKEN": "your-token",
        "VECTORIZE_PIPELINE_ID": "your-pipeline-id"
      }
    }
  }
}

工具

检索文档

执行向量搜索并检索文档(请参阅官方 API):

{
  "name": "retrieve",
  "arguments": {
    "question": "Financial health of the company",
    "k": 5
  }
}

文本提取和分块(任何文件到 Markdown)

从文档中提取文本并将其分块为 Markdown 格式(请参阅官方 API):

{
  "name": "extract",
  "arguments": {
    "base64document": "base64-encoded-document",
    "contentType": "application/pdf"
  }
}

深度研究

从您的管道生成一个私有深度研究(请参阅官方 API):

{
  "name": "deep-research",
  "arguments": {
    "query": "Generate a financial status report about the company",
    "webSearch": true
  }
}

开发

npm install
npm run dev

发布

更改 package.json 版本,然后:

git commit -am "x.y.z"
git tag x.y.z
git push origin
git push origin --tags

贡献

  1. Fork 仓库
  2. 创建您的功能分支
  3. 提交 pull request

推荐服务器

Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选
serper-search-scrape-mcp-server

serper-search-scrape-mcp-server

这个 Serper MCP 服务器支持搜索和网页抓取,并且支持 Serper API 引入的所有最新参数,例如位置信息。

精选
TypeScript
The Verge News MCP Server

The Verge News MCP Server

提供从The Verge的RSS feed获取和搜索新闻的工具,允许用户获取今日新闻、检索过去一周的随机文章,以及在最近的Verge内容中搜索特定关键词。

精选
TypeScript
Crypto Price & Market Analysis MCP Server

Crypto Price & Market Analysis MCP Server

一个模型上下文协议 (MCP) 服务器,它使用 CoinCap API 提供全面的加密货币分析。该服务器通过一个易于使用的界面提供实时价格数据、市场分析和历史趋势。 (Alternative, slightly more formal and technical translation): 一个模型上下文协议 (MCP) 服务器,利用 CoinCap API 提供全面的加密货币分析服务。该服务器通过用户友好的界面,提供实时价格数据、市场分析以及历史趋势数据。

精选
TypeScript
MCP PubMed Search

MCP PubMed Search

用于搜索 PubMed 的服务器(PubMed 是一个免费的在线数据库,用户可以在其中搜索生物医学和生命科学文献)。 我是在 MCP 发布当天创建的,但当时正在度假。 我看到有人在您的数据库中发布了类似的服务器,但还是决定发布我的。

精选
Python
Tavily MCP Server

Tavily MCP Server

使用 Tavily 的搜索 API 提供 AI 驱动的网络搜索功能,使 LLM 能够执行复杂的网络搜索、获得问题的直接答案以及搜索最近的新闻文章。

精选
Python
mixpanel

mixpanel

连接到您的 Mixpanel 数据。从 Mixpanel 分析查询事件、留存和漏斗数据。

精选
TypeScript
Sequential Thinking MCP Server

Sequential Thinking MCP Server

这个服务器通过将复杂问题分解为顺序步骤来促进结构化的问题解决,支持修订,并通过完整的 MCP 集成来实现多条解决方案路径。

精选
Python
mcp-shodan

mcp-shodan

用于查询 Shodan API 和 Shodan CVEDB 的 MCP 服务器。该服务器提供 IP 查询、设备搜索、DNS 查询、漏洞查询、CPE 查询等工具。

精选
JavaScript