Google Search Console MCP Server
guchey
README
Google Search Console MCP Server
A tool for accessing Google Search Console using the Model Context Protocol (MCP) server.
Features
- Retrieve search analytics data (with dimension support)
- Detailed data analysis with customizable reporting periods
Prerequisites
- Python 3.10 or higher
- Google Cloud project with Search Console API enabled
- Service account credentials with access to Search Console
Installation
pip install mcp-server-google-search-console
Or install from source:
git clone https://github.com/yourusername/mcp-server-google-search-console.git
cd mcp-server-google-search-console
pip install -e .
Setting Up Development Environment (uv)
This project uses uv for faster package management and installation.
Installing uv and uvx
First, install uv and uvx:
pip install uv uvx
Creating and Managing Virtual Environments
To create a new virtual environment using uv:
uv venv
source .venv/bin/activate # Linux/macOS
.venv\Scripts\activate # Windows
Installing Dependencies
After cloning the repository, install dependencies:
git clone https://github.com/yourusername/mcp-server-google-search-console.git
cd mcp-server-google-search-console
pip install -e .
To install the MCP package separately:
pip install "mcp[cli]"
Installing Development Dependencies
To install additional tools needed for development, run:
pip install -e ".[dev]"
Authentication Setup
To obtain Google Search Console API credentials:
- Access the Google Cloud Console
- Create a new project or select an existing one
- Enable the API:
- Go to "APIs & Services" > "Library"
- Search for and enable "Search Console API"
- Create credentials:
- Go to "APIs & Services" > "Credentials"
- Click "Create Credentials" > "Service Account"
- Enter service account details
- Create a new key in JSON format
- The credentials file (.json) will be automatically downloaded
- Grant access:
- Open Search Console
- Add the service account email address (format: name@project.iam.gserviceaccount.com) as a property administrator
Usage
Set an environment variable to specify the path to your Google Search Console credentials file:
export GOOGLE_APPLICATION_CREDENTIALS=/path/to/credentials.json
Starting the MCP Server
Standard Method
mcp-server-gsc
Using uvx
With uvx, you can automate virtual environment and package installation:
# Run directly without installation
uvx run mcp-server-gsc
# Run with a specific Python version
uvx --python=3.11 run mcp-server-gsc
# Run with specified environment variables
uvx run -e GOOGLE_APPLICATION_CREDENTIALS=/path/to/credentials.json mcp-server-gsc
Configuration for Claude Desktop Application
Standard Configuration
{
"mcpServers": {
"gsc": {
"command": "mcp-server-gsc",
"env": {
"GOOGLE_APPLICATION_CREDENTIALS": "/path/to/credentials.json"
}
}
}
}
Configuration Using uvx
{
"mcpServers": {
"gsc": {
"command": "uvx",
"args": ["run", "mcp-server-gsc"],
"env": {
"GOOGLE_APPLICATION_CREDENTIALS": "/path/to/credentials.json"
}
}
}
}
Available Tools
search_analytics
Retrieve search performance data from Google Search Console:
Required Parameters:
siteUrl
: Site URL (format:http://www.example.com/
orsc-domain:example.com
)startDate
: Start date (YYYY-MM-DD)endDate
: End date (YYYY-MM-DD)
Optional Parameters:
dimensions
: Comma-separated list (query,page,country,device,searchAppearance
)type
: Search type (web
,image
,video
,news
)aggregationType
: Aggregation method (auto
,byNewsShowcasePanel
,byProperty
,byPage
)rowLimit
: Maximum number of rows to return (default: 1000)
Example usage:
{
"siteUrl": "https://example.com",
"startDate": "2024-01-01",
"endDate": "2024-01-31",
"dimensions": "query,country",
"type": "web",
"rowLimit": 500
}
Release Procedure
This project is automatically published to PyPI when a GitHub release tag is created.
To release a new version:
-
Run the version update script:
python scripts/bump_version.py [major|minor|patch]
-
Follow the displayed instructions to push to GitHub:
git add pyproject.toml git commit -m "Bump version to x.y.z" git tag vx.y.z git push origin main vx.y.z
-
Create a release on the GitHub repository page:
- Select tag:
vx.y.z
- Enter title:
vx.y.z
- Fill in release notes
- Click "Publish"
- Select tag:
-
GitHub Actions will be triggered and automatically publish the package to PyPI.
License
MIT
Contributions
Contributions are welcome! Please read the contribution guidelines before submitting a pull request.
推荐服务器
Crypto Price & Market Analysis MCP Server
一个模型上下文协议 (MCP) 服务器,它使用 CoinCap API 提供全面的加密货币分析。该服务器通过一个易于使用的界面提供实时价格数据、市场分析和历史趋势。 (Alternative, slightly more formal and technical translation): 一个模型上下文协议 (MCP) 服务器,利用 CoinCap API 提供全面的加密货币分析服务。该服务器通过用户友好的界面,提供实时价格数据、市场分析以及历史趋势数据。
MCP PubMed Search
用于搜索 PubMed 的服务器(PubMed 是一个免费的在线数据库,用户可以在其中搜索生物医学和生命科学文献)。 我是在 MCP 发布当天创建的,但当时正在度假。 我看到有人在您的数据库中发布了类似的服务器,但还是决定发布我的。
mixpanel
连接到您的 Mixpanel 数据。从 Mixpanel 分析查询事件、留存和漏斗数据。

Sequential Thinking MCP Server
这个服务器通过将复杂问题分解为顺序步骤来促进结构化的问题解决,支持修订,并通过完整的 MCP 集成来实现多条解决方案路径。

Nefino MCP Server
为大型语言模型提供访问德国可再生能源项目新闻和信息的能力,允许按地点、主题(太阳能、风能、氢能)和日期范围进行筛选。
Vectorize
将 MCP 服务器向量化以实现高级检索、私有深度研究、Anything-to-Markdown 文件提取和文本分块。
Mathematica Documentation MCP server
一个服务器,通过 FastMCP 提供对 Mathematica 文档的访问,使用户能够从 Wolfram Mathematica 检索函数文档和列出软件包符号。
kb-mcp-server
一个 MCP 服务器,旨在实现便携性、本地化、简易性和便利性,以支持对 txtai “all in one” 嵌入数据库进行基于语义/图的检索。任何 tar.gz 格式的 txtai 嵌入数据库都可以被加载。
Research MCP Server
这个服务器用作 MCP 服务器,与 Notion 交互以检索和创建调查数据,并与 Claude Desktop Client 集成以进行和审查调查。

Cryo MCP Server
一个API服务器,实现了模型补全协议(MCP),用于Cryo区块链数据提取。它允许用户通过任何兼容MCP的客户端查询以太坊区块链数据。