Google Search Console MCP Server

Google Search Console MCP Server

guchey

研究与数据
访问服务器

README

Google Search Console MCP Server

A tool for accessing Google Search Console using the Model Context Protocol (MCP) server.

Features

  • Retrieve search analytics data (with dimension support)
  • Detailed data analysis with customizable reporting periods

Prerequisites

  • Python 3.10 or higher
  • Google Cloud project with Search Console API enabled
  • Service account credentials with access to Search Console

Installation

pip install mcp-server-google-search-console

Or install from source:

git clone https://github.com/yourusername/mcp-server-google-search-console.git
cd mcp-server-google-search-console
pip install -e .

Setting Up Development Environment (uv)

This project uses uv for faster package management and installation.

Installing uv and uvx

First, install uv and uvx:

pip install uv uvx

Creating and Managing Virtual Environments

To create a new virtual environment using uv:

uv venv
source .venv/bin/activate  # Linux/macOS
.venv\Scripts\activate     # Windows

Installing Dependencies

After cloning the repository, install dependencies:

git clone https://github.com/yourusername/mcp-server-google-search-console.git
cd mcp-server-google-search-console
pip install -e .

To install the MCP package separately:

pip install "mcp[cli]"

Installing Development Dependencies

To install additional tools needed for development, run:

pip install -e ".[dev]"

Authentication Setup

To obtain Google Search Console API credentials:

  1. Access the Google Cloud Console
  2. Create a new project or select an existing one
  3. Enable the API:
    • Go to "APIs & Services" > "Library"
    • Search for and enable "Search Console API"
  4. Create credentials:
    • Go to "APIs & Services" > "Credentials"
    • Click "Create Credentials" > "Service Account"
    • Enter service account details
    • Create a new key in JSON format
    • The credentials file (.json) will be automatically downloaded
  5. Grant access:
    • Open Search Console
    • Add the service account email address (format: name@project.iam.gserviceaccount.com) as a property administrator

Usage

Set an environment variable to specify the path to your Google Search Console credentials file:

export GOOGLE_APPLICATION_CREDENTIALS=/path/to/credentials.json

Starting the MCP Server

Standard Method

mcp-server-gsc

Using uvx

With uvx, you can automate virtual environment and package installation:

# Run directly without installation
uvx run mcp-server-gsc

# Run with a specific Python version
uvx --python=3.11 run mcp-server-gsc

# Run with specified environment variables
uvx run -e GOOGLE_APPLICATION_CREDENTIALS=/path/to/credentials.json mcp-server-gsc

Configuration for Claude Desktop Application

Standard Configuration

{
  "mcpServers": {
    "gsc": {
      "command": "mcp-server-gsc",
      "env": {
        "GOOGLE_APPLICATION_CREDENTIALS": "/path/to/credentials.json"
      }
    }
  }
}

Configuration Using uvx

{
  "mcpServers": {
    "gsc": {
      "command": "uvx",
      "args": ["run", "mcp-server-gsc"],
      "env": {
        "GOOGLE_APPLICATION_CREDENTIALS": "/path/to/credentials.json"
      }
    }
  }
}

Available Tools

search_analytics

Retrieve search performance data from Google Search Console:

Required Parameters:

  • siteUrl: Site URL (format: http://www.example.com/ or sc-domain:example.com)
  • startDate: Start date (YYYY-MM-DD)
  • endDate: End date (YYYY-MM-DD)

Optional Parameters:

  • dimensions: Comma-separated list (query,page,country,device,searchAppearance)
  • type: Search type (web, image, video, news)
  • aggregationType: Aggregation method (auto, byNewsShowcasePanel, byProperty, byPage)
  • rowLimit: Maximum number of rows to return (default: 1000)

Example usage:

{
  "siteUrl": "https://example.com",
  "startDate": "2024-01-01",
  "endDate": "2024-01-31",
  "dimensions": "query,country",
  "type": "web",
  "rowLimit": 500
}

Release Procedure

This project is automatically published to PyPI when a GitHub release tag is created.

To release a new version:

  1. Run the version update script:

    python scripts/bump_version.py [major|minor|patch]
    
  2. Follow the displayed instructions to push to GitHub:

    git add pyproject.toml
    git commit -m "Bump version to x.y.z"
    git tag vx.y.z
    git push origin main vx.y.z
    
  3. Create a release on the GitHub repository page:

    • Select tag: vx.y.z
    • Enter title: vx.y.z
    • Fill in release notes
    • Click "Publish"
  4. GitHub Actions will be triggered and automatically publish the package to PyPI.

License

MIT

Contributions

Contributions are welcome! Please read the contribution guidelines before submitting a pull request.

推荐服务器

Crypto Price & Market Analysis MCP Server

Crypto Price & Market Analysis MCP Server

一个模型上下文协议 (MCP) 服务器,它使用 CoinCap API 提供全面的加密货币分析。该服务器通过一个易于使用的界面提供实时价格数据、市场分析和历史趋势。 (Alternative, slightly more formal and technical translation): 一个模型上下文协议 (MCP) 服务器,利用 CoinCap API 提供全面的加密货币分析服务。该服务器通过用户友好的界面,提供实时价格数据、市场分析以及历史趋势数据。

精选
TypeScript
MCP PubMed Search

MCP PubMed Search

用于搜索 PubMed 的服务器(PubMed 是一个免费的在线数据库,用户可以在其中搜索生物医学和生命科学文献)。 我是在 MCP 发布当天创建的,但当时正在度假。 我看到有人在您的数据库中发布了类似的服务器,但还是决定发布我的。

精选
Python
mixpanel

mixpanel

连接到您的 Mixpanel 数据。从 Mixpanel 分析查询事件、留存和漏斗数据。

精选
TypeScript
Sequential Thinking MCP Server

Sequential Thinking MCP Server

这个服务器通过将复杂问题分解为顺序步骤来促进结构化的问题解决,支持修订,并通过完整的 MCP 集成来实现多条解决方案路径。

精选
Python
Nefino MCP Server

Nefino MCP Server

为大型语言模型提供访问德国可再生能源项目新闻和信息的能力,允许按地点、主题(太阳能、风能、氢能)和日期范围进行筛选。

官方
Python
Vectorize

Vectorize

将 MCP 服务器向量化以实现高级检索、私有深度研究、Anything-to-Markdown 文件提取和文本分块。

官方
JavaScript
Mathematica Documentation MCP server

Mathematica Documentation MCP server

一个服务器,通过 FastMCP 提供对 Mathematica 文档的访问,使用户能够从 Wolfram Mathematica 检索函数文档和列出软件包符号。

本地
Python
kb-mcp-server

kb-mcp-server

一个 MCP 服务器,旨在实现便携性、本地化、简易性和便利性,以支持对 txtai “all in one” 嵌入数据库进行基于语义/图的检索。任何 tar.gz 格式的 txtai 嵌入数据库都可以被加载。

本地
Python
Research MCP Server

Research MCP Server

这个服务器用作 MCP 服务器,与 Notion 交互以检索和创建调查数据,并与 Claude Desktop Client 集成以进行和审查调查。

本地
Python
Cryo MCP Server

Cryo MCP Server

一个API服务器,实现了模型补全协议(MCP),用于Cryo区块链数据提取。它允许用户通过任何兼容MCP的客户端查询以太坊区块链数据。

本地
Python