MCP
Okay, here's a breakdown of how you might configure an MCP (presumably a "Management Console Platform" or similar) server to view company information and stock prices using Claude (likely referring to Anthropic's Claude AI model). This is a conceptual outline, as the specific steps will depend heavily on the MCP software you're using. **I. Understanding the Components** * **MCP Server:** This is the central system that manages and displays information. It likely has a database, a user interface, and some form of scripting or configuration capabilities. * **Claude AI:** This is the AI model that will provide the company information and stock price data. You'll need to interact with it through its API. * **Data Sources:** Claude will need access to reliable data sources for company information and stock prices. This might include: * **Financial APIs:** APIs like Alpha Vantage, IEX Cloud, or Finnhub provide real-time and historical stock data. * **Company Information Databases:** APIs or databases like Crunchbase, Clearbit, or even Wikipedia can provide company descriptions, industry information, and key personnel. **II. High-Level Steps** 1. **Choose and Set Up Data Sources:** * **Select APIs:** Research and choose the financial and company information APIs that best suit your needs (consider cost, data coverage, and ease of use). * **API Keys:** Obtain API keys from the chosen providers. Store these securely (e.g., using environment variables or a secrets management system). 2. **Develop an API Integration Layer (Middleware):** * **Purpose:** This layer acts as an intermediary between your MCP server and the Claude API and data sources. It handles: * **API Calls:** Making requests to the financial and company information APIs. * **Data Formatting:** Transforming the data from the APIs into a format that Claude can understand. * **Error Handling:** Managing API errors and retries. * **Rate Limiting:** Respecting the API rate limits to avoid being blocked. * **Technology:** You can build this layer using languages like Python, Node.js, or Java. Python is often a good choice due to its rich ecosystem of libraries for data science and API interaction. 3. **Integrate with Claude AI:** * **Claude API Access:** Obtain access to the Claude API (you'll likely need to sign up for an account with Anthropic). * **Prompt Engineering:** Craft effective prompts for Claude to extract the desired information. For example: * "Summarize the key financial information for [Company Name] based on the following data: [Financial Data]." * "Provide a brief overview of [Company Name], including its industry, key products, and recent news." * "What is the current stock price of [Stock Ticker]?" * **API Calls to Claude:** Send the formatted data and prompts to the Claude API. * **Response Handling:** Parse the response from Claude and extract the relevant information. 4. **Configure the MCP Server:** * **Data Display:** Design the user interface within your MCP to display the company information and stock prices. * **Data Retrieval:** Configure the MCP to call your API integration layer to retrieve the data. This might involve: * **Scripting:** Using the MCP's scripting language (if it has one) to make HTTP requests to your API. * **Plugins/Extensions:** Developing a plugin or extension for the MCP that handles the data retrieval and display. * **User Interface:** Create a user-friendly interface where users can search for companies and view their information. 5. **Testing and Refinement:** * **Thorough Testing:** Test the entire system with a variety of companies and stock tickers to ensure accuracy and reliability. * **Prompt Optimization:** Refine your prompts to Claude to improve the quality of the responses. * **Error Handling:** Implement robust error handling to gracefully handle API failures and other issues. * **Performance Tuning:** Optimize the performance of the system to ensure that data is retrieved and displayed quickly. **III. Example Implementation (Conceptual - Python with Flask)** This is a simplified example to illustrate the concepts. You'll need to adapt it to your specific MCP and data sources. ```python # Python (Flask) API Integration Layer from flask import Flask, request, jsonify import requests import os app = Flask(__name__) # API Keys (replace with your actual keys) ALPHAVANTAGE_API_KEY = os.environ.get("ALPHAVANTAGE_API_KEY") CLAUDE_API_KEY = os.environ.get("CLAUDE_API_KEY") # Function to get stock price from Alpha Vantage def get_stock_price(ticker): url = f"https://www.alphavantage.co/query?function=GLOBAL_QUOTE&symbol={ticker}&apikey={ALPHAVANTAGE_API_KEY}" try: response = requests.get(url) response.raise_for_status() # Raise HTTPError for bad responses (4xx or 5xx) data = response.json() price = data['Global Quote']['05. price'] return price except requests.exceptions.RequestException as e: print(f"Error fetching stock price: {e}") return None except KeyError: print("Error: Could not parse stock price data.") return None # Function to get company information from Claude (using a placeholder) def get_company_info(company_name): # In a real implementation, you'd fetch data from a company information API # and then use Claude to summarize it. This is a simplified example. prompt = f"Provide a brief overview of {company_name}." # Replace with actual Claude API call # response = requests.post("CLAUDE_API_ENDPOINT", headers={"Authorization": f"Bearer {CLAUDE_API_KEY}"}, json={"prompt": prompt}) # company_info = response.json()["text"] company_info = f"This is placeholder information for {company_name}." return company_info @app.route("/company_data") def get_company_data(): company_name = request.args.get("company") ticker = request.args.get("ticker") if not company_name or not ticker: return jsonify({"error": "Company name and ticker are required."}), 400 stock_price = get_stock_price(ticker) company_info = get_company_info(company_name) if stock_price is None: return jsonify({"error": "Could not retrieve stock price."}), 500 data = { "company_name": company_name, "ticker": ticker, "stock_price": stock_price, "company_info": company_info, } return jsonify(data) if __name__ == "__main__": app.run(debug=True) ``` **Explanation of the Python Example:** * **Flask:** A lightweight web framework for creating the API. * **API Keys:** The code retrieves API keys from environment variables (a secure way to store them). **Important:** Never hardcode API keys directly into your code. * **`get_stock_price()`:** Fetches the stock price from the Alpha Vantage API. It includes error handling for API requests and data parsing. * **`get_company_info()`:** This is a placeholder. In a real implementation, you would: 1. Fetch company data from a company information API (e.g., Crunchbase). 2. Construct a prompt for Claude that includes the company data. 3. Send the prompt to the Claude API. 4. Parse the response from Claude to extract the company overview. * **`/company_data` endpoint:** This endpoint takes the company name and ticker as query parameters. It calls the `get_stock_price()` and `get_company_info()` functions and returns the data as a JSON response. * **Error Handling:** The code includes basic error handling to catch API errors and missing data. **How to Use the Example with Your MCP:** 1. **Deploy the API:** Deploy the Python Flask API to a server (e.g., using Heroku, AWS, or Google Cloud). 2. **Configure Your MCP:** In your MCP, you would need to: * Create a user interface element (e.g., a search box) where users can enter the company name and ticker. * Use the MCP's scripting language or plugin system to make an HTTP request to your API endpoint (e.g., `http://your-api-server/company_data?company=Apple&ticker=AAPL`). * Parse the JSON response from the API and display the data in the MCP's user interface. **IV. Important Considerations** * **Security:** Protect your API keys and ensure that your API is secure. Consider using authentication and authorization to control access to the API. * **Scalability:** If you expect a large number of users, you'll need to design your API to be scalable. Consider using a load balancer and caching to improve performance. * **Cost:** Be aware of the costs associated with using the Claude API and the financial and company information APIs. Monitor your usage and set limits to avoid unexpected charges. * **Data Accuracy:** The accuracy of the data depends on the quality of the data sources and the effectiveness of your prompts to Claude. Verify the data and consider using multiple data sources to improve accuracy. * **Claude API Limitations:** Be aware of Claude's context window limits and other API limitations. You may need to break down large requests into smaller chunks. * **Prompt Engineering:** Experiment with different prompts to Claude to get the best results. Consider using techniques like few-shot learning to improve the accuracy and relevance of the responses. * **Rate Limiting:** All APIs have rate limits. Implement proper rate limiting in your API integration layer to avoid being blocked. **In Summary** Integrating Claude with your MCP to view company information and stock prices involves: 1. Setting up data sources (financial and company information APIs). 2. Creating an API integration layer to handle API calls, data formatting, and error handling. 3. Integrating with the Claude API to generate summaries and insights. 4. Configuring your MCP to retrieve and display the data. 5. Thoroughly testing and refining the system. Remember to adapt this outline to the specific capabilities of your MCP server and the requirements of your application. Good luck!
Lacri1
README
MCP
使用 Claude 配置 MCP 服务器以查看公司信息和股票价格
claude_desktop_config.json
{
"mcpServers": {
"StocksMCPServer": {
"command": "uv",
"args": [
"--directory",
"C:\\Users\\user\\PycharmProjects\\mcp", // 你的项目目录
"run",
"--with",
"mcp",
"mcp",
"run",
"main.py"
]
}
}
}
推荐服务器
Crypto Price & Market Analysis MCP Server
一个模型上下文协议 (MCP) 服务器,它使用 CoinCap API 提供全面的加密货币分析。该服务器通过一个易于使用的界面提供实时价格数据、市场分析和历史趋势。 (Alternative, slightly more formal and technical translation): 一个模型上下文协议 (MCP) 服务器,利用 CoinCap API 提供全面的加密货币分析服务。该服务器通过用户友好的界面,提供实时价格数据、市场分析以及历史趋势数据。
MCP PubMed Search
用于搜索 PubMed 的服务器(PubMed 是一个免费的在线数据库,用户可以在其中搜索生物医学和生命科学文献)。 我是在 MCP 发布当天创建的,但当时正在度假。 我看到有人在您的数据库中发布了类似的服务器,但还是决定发布我的服务器。
mixpanel
连接到您的 Mixpanel 数据。 从 Mixpanel 分析查询事件、留存和漏斗数据。

Sequential Thinking MCP Server
这个服务器通过将复杂问题分解为顺序步骤来促进结构化的问题解决,支持修订,并通过完整的 MCP 集成来实现多条解决方案路径。

Nefino MCP Server
为大型语言模型提供访问德国可再生能源项目新闻和信息的能力,允许按地点、主题(太阳能、风能、氢能)和日期范围进行筛选。
Vectorize
将 MCP 服务器向量化以实现高级检索、私有深度研究、Anything-to-Markdown 文件提取和文本分块。
Mathematica Documentation MCP server
一个服务器,通过 FastMCP 提供对 Mathematica 文档的访问,使用户能够从 Wolfram Mathematica 检索函数文档和列出软件包符号。
kb-mcp-server
一个 MCP 服务器,旨在实现便携性、本地化、简易性和便利性,以支持对 txtai “all in one” 嵌入数据库进行基于语义/图的检索。任何 tar.gz 格式的 txtai 嵌入数据库都可以被加载。
Research MCP Server
这个服务器用作 MCP 服务器,与 Notion 交互以检索和创建调查数据,并与 Claude Desktop Client 集成以进行和审查调查。

Cryo MCP Server
一个API服务器,实现了模型补全协议(MCP),用于Cryo区块链数据提取,允许用户通过任何兼容MCP的客户端查询以太坊区块链数据。