MCP-Sentry
A Model Context Protocol server for retrieving and analyzing issues from Sentry.io - MCP-100/mcp-sentry
README
mcp-sentry: A Sentry MCP server
Overview
A Model Context Protocol server for retrieving and analyzing issues from Sentry.io. This server provides tools to inspect error reports, stacktraces, and other debugging information from your Sentry account.
Tools
get_sentry_issue
- Retrieve and analyze a Sentry issue by ID or URL
- Input:
issue_id_or_url
(string): Sentry issue ID or URL to analyze
- Returns: Issue details including:
- Title
- Issue ID
- Status
- Level
- First seen timestamp
- Last seen timestamp
- Event count
- Full stacktrace
get_list_issues
- Retrieve and analyze Sentry issues by project slug
- Input:
project_slug
(string): Sentry project slug to analyzeorganization_slug
(string): Sentry organization slug to analyze
- Returns: List of issues with details including:
- Title
- Issue ID
- Status
- Level
- First seen timestamp
- Last seen timestamp
- Event count
- Basic issue information
Prompts
sentry-issue
- Retrieve issue details from Sentry
- Input:
issue_id_or_url
(string): Sentry issue ID or URL
- Returns: Formatted issue details as conversation context
Installation
Installing via Smithery
To install mcp-sentry for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @qianniuspace/mcp-sentry --client claude
Using uv (recommended)
When using uv
no specific installation is needed. We will
use uvx
to directly run mcp-sentry.
Using PIP
Alternatively you can install mcp-sentry
via pip:
pip install mcp-sentry
or use uv
uv pip install -e .
After installation, you can run it as a script using:
python -m mcp_sentry
Configuration
Usage with Claude Desktop
Add this to your claude_desktop_config.json
:
<details> <summary>Using uvx</summary>
"mcpServers": {
"sentry": {
"command": "uvx",
"args": ["mcp-sentry", "--auth-token", "YOUR_SENTRY_TOKEN","--project-slug" ,"YOUR_PROJECT_SLUG", "--organization-slug","YOUR_ORGANIZATION_SLUG"]
}
}
</details>
<details> <summary>Using docker</summary>
"mcpServers": {
"sentry": {
"command": "docker",
"args": ["run", "-i", "--rm", "mcp/sentry", "--auth-token", "YOUR_SENTRY_TOKEN","--project-slug" ,"YOUR_PROJECT_SLUG", "--organization-slug","YOUR_ORGANIZATION_SLUG"]
}
}
</details>
<details>
<summary>Using pip installation</summary>
"mcpServers": {
"sentry": {
"command": "python",
"args": ["-m", "mcp_sentry", "--auth-token", "YOUR_SENTRY_TOKEN","--project-slug" ,"YOUR_PROJECT_SLUG", "--organization-slug","YOUR_ORGANIZATION_SLUG"]
}
}
</details>
Usage with Zed
Add to your Zed settings.json:
<details> <summary>Using uvx</summary>
For Example Curson
"context_servers": [
"mcp-sentry": {
"command": {
"path": "uvx",
"args": ["mcp-sentry", "--auth-token", "YOUR_SENTRY_TOKEN","--project-slug" ,"YOUR_PROJECT_SLUG", "--organization-slug","YOUR_ORGANIZATION_SLUG"]
}
}
],
</details>
<details> <summary>Using pip installation</summary>
"context_servers": {
"mcp-sentry": {
"command": "python",
"args": ["-m", "mcp_sentry", "--auth-token", "YOUR_SENTRY_TOKEN","--project-slug" ,"YOUR_PROJECT_SLUG", "--organization-slug","YOUR_ORGANIZATION_SLUG"]
}
},
</details>
<details> <summary>Using pip installation with custom path</summary>
"context_servers": {
"sentry": {
"command": "python",
"args": [
"-m",
"mcp_sentry",
"--auth-token",
"YOUR_SENTRY_TOKEN",
"--project-slug",
"YOUR_PROJECT_SLUG",
"--organization-slug",
"YOUR_ORGANIZATION_SLUG"
],
"env": {
"PYTHONPATH": "path/to/mcp-sentry/src"
}
}
},
</details>
Debugging
You can use the MCP inspector to debug the server. For uvx installations:
npx @modelcontextprotocol/inspector uvx mcp-sentry --auth-token YOUR_SENTRY_TOKEN --project-slug YOUR_PROJECT_SLUG --organization-slug YOUR_ORGANIZATION_SLUG
Or if you've installed the package in a specific directory or are developing on it:
cd path/to/servers/src/sentry
npx @modelcontextprotocol/inspector uv run mcp-sentry --auth-token YOUR_SENTRY_TOKEN --project-slug YOUR_PROJECT_SLUG --organization-slug YOUR_ORGANIZATION_SLUG
or in term
npx @modelcontextprotocol/inspector uv --directory /Volumes/ExtremeSSD/MCP/mcp-sentry/src run mcp_sentry --auth-token YOUR_SENTRY_TOKEN
--project-slug YOUR_PROJECT_SLUG --organization-slug YOUR_ORGANIZATION_SLUG
Fork From
License
This MCP server is licensed under the MIT License. This means you are free to use, modify, and distribute the software, subject to the terms and conditions of the MIT License. For more details, please see the LICENSE file in the project repository.
推荐服务器

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
AIO-MCP Server
🚀 集成了 AI 搜索、RAG 和多服务(GitLab/Jira/Confluence/YouTube)的一体化 MCP 服务器,旨在增强 AI 驱动的开发工作流程。来自 Folk。
Hyperbrowser
欢迎来到 Hyperbrowser,人工智能的互联网。Hyperbrowser 是下一代平台,旨在增强人工智能代理的能力,并实现轻松、可扩展的浏览器自动化。它专为人工智能开发者打造,消除了本地基础设施和性能瓶颈带来的麻烦,让您能够:
BigQuery MCP Server
这是一个服务器,可以让你的大型语言模型(LLM,比如Claude)直接与你的BigQuery数据对话!可以把它想象成一个友好的翻译器,它位于你的AI助手和数据库之间,确保它们可以安全高效地进行交流。
mcp-perplexity
Perplexity API 的 MCP 服务器。
MCP Web Research Server
一个模型上下文协议服务器,使 Claude 能够通过集成 Google 搜索、提取网页内容和捕获屏幕截图来进行网络研究。
MySQL MCP Server
允许人工智能助手通过受控界面列出表格、读取数据和执行 SQL 查询,从而使数据库探索和分析更安全、更有条理。
mcp-codex-keeper
作为开发知识的守护者,为 AI 助手提供精心策划的最新文档和最佳实践访问权限。
MCP Etherscan Server
通过 Etherscan 的 API 促进与以太坊区块链数据的交互,提供对余额、交易、代币转移、合约 ABI、gas 价格和 ENS 名称解析的实时访问。
Perplexity Deep Research MCP
一个服务器,它允许 AI 助手使用 Perplexity 的 sonar-deep-research 模型进行网络搜索,并提供引用支持。