MCP-Sentry

MCP-Sentry

A Model Context Protocol server for retrieving and analyzing issues from Sentry.io - MCP-100/mcp-sentry

数据与应用分析
访问服务器

README

mcp-sentry: A Sentry MCP server

smithery badge

Overview

A Model Context Protocol server for retrieving and analyzing issues from Sentry.io. This server provides tools to inspect error reports, stacktraces, and other debugging information from your Sentry account.

Tools

  1. get_sentry_issue
    • Retrieve and analyze a Sentry issue by ID or URL
    • Input:
      • issue_id_or_url (string): Sentry issue ID or URL to analyze
    • Returns: Issue details including:
      • Title
      • Issue ID
      • Status
      • Level
      • First seen timestamp
      • Last seen timestamp
      • Event count
      • Full stacktrace
  2. get_list_issues
    • Retrieve and analyze Sentry issues by project slug
    • Input:
      • project_slug (string): Sentry project slug to analyze
      • organization_slug (string): Sentry organization slug to analyze
    • Returns: List of issues with details including:
      • Title
      • Issue ID
      • Status
      • Level
      • First seen timestamp
      • Last seen timestamp
      • Event count
      • Basic issue information

Prompts

  1. sentry-issue
    • Retrieve issue details from Sentry
    • Input:
      • issue_id_or_url (string): Sentry issue ID or URL
    • Returns: Formatted issue details as conversation context

Installation

Installing via Smithery

To install mcp-sentry for Claude Desktop automatically via Smithery:

npx -y @smithery/cli install @qianniuspace/mcp-sentry --client claude

Using uv (recommended)

When using uv no specific installation is needed. We will use uvx to directly run mcp-sentry.

Using PIP

Alternatively you can install mcp-sentry via pip:

pip install mcp-sentry

or use uv

uv pip install -e .

After installation, you can run it as a script using:

python -m mcp_sentry

Configuration

Usage with Claude Desktop

Add this to your claude_desktop_config.json:

<details> <summary>Using uvx</summary>

"mcpServers": {
  "sentry": {
    "command": "uvx",
    "args": ["mcp-sentry", "--auth-token", "YOUR_SENTRY_TOKEN","--project-slug" ,"YOUR_PROJECT_SLUG", "--organization-slug","YOUR_ORGANIZATION_SLUG"]
  }
}

</details>

<details> <summary>Using docker</summary>

"mcpServers": {
  "sentry": {
    "command": "docker",
    "args": ["run", "-i", "--rm", "mcp/sentry", "--auth-token", "YOUR_SENTRY_TOKEN","--project-slug" ,"YOUR_PROJECT_SLUG", "--organization-slug","YOUR_ORGANIZATION_SLUG"]
  }
}

</details>

<details>

<summary>Using pip installation</summary>

"mcpServers": {
  "sentry": {
    "command": "python",
    "args": ["-m", "mcp_sentry", "--auth-token", "YOUR_SENTRY_TOKEN","--project-slug" ,"YOUR_PROJECT_SLUG", "--organization-slug","YOUR_ORGANIZATION_SLUG"]
  }
}

</details>

Usage with Zed

Add to your Zed settings.json:

<details> <summary>Using uvx</summary>

For Example Curson mcp.json

"context_servers": [
  "mcp-sentry": {
    "command": {
      "path": "uvx",
      "args": ["mcp-sentry", "--auth-token", "YOUR_SENTRY_TOKEN","--project-slug" ,"YOUR_PROJECT_SLUG", "--organization-slug","YOUR_ORGANIZATION_SLUG"]
    }
  }
],

</details>

<details> <summary>Using pip installation</summary>

"context_servers": {
  "mcp-sentry": {
    "command": "python",
    "args": ["-m", "mcp_sentry", "--auth-token", "YOUR_SENTRY_TOKEN","--project-slug" ,"YOUR_PROJECT_SLUG", "--organization-slug","YOUR_ORGANIZATION_SLUG"]
  }
},

</details>

<details> <summary>Using pip installation with custom path</summary>

"context_servers": {
  "sentry": {
      "command": "python",
      "args": [
        "-m",
        "mcp_sentry",
        "--auth-token",
        "YOUR_SENTRY_TOKEN",
        "--project-slug",
        "YOUR_PROJECT_SLUG",
        "--organization-slug",
        "YOUR_ORGANIZATION_SLUG"
      ],
      "env": {
        "PYTHONPATH": "path/to/mcp-sentry/src"
      }
    }
},

</details>

Debugging

You can use the MCP inspector to debug the server. For uvx installations:

npx @modelcontextprotocol/inspector uvx mcp-sentry --auth-token YOUR_SENTRY_TOKEN --project-slug YOUR_PROJECT_SLUG --organization-slug YOUR_ORGANIZATION_SLUG

Or if you've installed the package in a specific directory or are developing on it:

cd path/to/servers/src/sentry
npx @modelcontextprotocol/inspector uv run mcp-sentry --auth-token YOUR_SENTRY_TOKEN --project-slug YOUR_PROJECT_SLUG --organization-slug YOUR_ORGANIZATION_SLUG  

or in term

npx @modelcontextprotocol/inspector uv --directory /Volumes/ExtremeSSD/MCP/mcp-sentry/src run mcp_sentry --auth-token YOUR_SENTRY_TOKEN
--project-slug YOUR_PROJECT_SLUG --organization-slug YOUR_ORGANIZATION_SLUG

Inspector-tools

Fork From

License

This MCP server is licensed under the MIT License. This means you are free to use, modify, and distribute the software, subject to the terms and conditions of the MIT License. For more details, please see the LICENSE file in the project repository.

推荐服务器

VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
AIO-MCP Server

AIO-MCP Server

🚀 集成了 AI 搜索、RAG 和多服务(GitLab/Jira/Confluence/YouTube)的一体化 MCP 服务器,旨在增强 AI 驱动的开发工作流程。来自 Folk。

精选
本地
Hyperbrowser

Hyperbrowser

欢迎来到 Hyperbrowser,人工智能的互联网。Hyperbrowser 是下一代平台,旨在增强人工智能代理的能力,并实现轻松、可扩展的浏览器自动化。它专为人工智能开发者打造,消除了本地基础设施和性能瓶颈带来的麻烦,让您能够:

精选
本地
BigQuery MCP Server

BigQuery MCP Server

这是一个服务器,可以让你的大型语言模型(LLM,比如Claude)直接与你的BigQuery数据对话!可以把它想象成一个友好的翻译器,它位于你的AI助手和数据库之间,确保它们可以安全高效地进行交流。

精选
mcp-perplexity

mcp-perplexity

Perplexity API 的 MCP 服务器。

精选
MCP Web Research Server

MCP Web Research Server

一个模型上下文协议服务器,使 Claude 能够通过集成 Google 搜索、提取网页内容和捕获屏幕截图来进行网络研究。

精选
MySQL MCP Server

MySQL MCP Server

允许人工智能助手通过受控界面列出表格、读取数据和执行 SQL 查询,从而使数据库探索和分析更安全、更有条理。

精选
mcp-codex-keeper

mcp-codex-keeper

作为开发知识的守护者,为 AI 助手提供精心策划的最新文档和最佳实践访问权限。

精选
MCP Etherscan Server

MCP Etherscan Server

通过 Etherscan 的 API 促进与以太坊区块链数据的交互,提供对余额、交易、代币转移、合约 ABI、gas 价格和 ENS 名称解析的实时访问。

精选
Perplexity Deep Research MCP

Perplexity Deep Research MCP

一个服务器,它允许 AI 助手使用 Perplexity 的 sonar-deep-research 模型进行网络搜索,并提供引用支持。

精选