MCP Server

MCP Server

实现模型上下文协议 (MCP),为 AI 模型提供一个标准化的接口,以便连接到外部数据源和工具,例如文件系统、数据库或 API。

远程shell执行
AI集成系统
访问服务器

README

Python 从0到1构建MCP Server & Client

中文 | English

简介

MCP Server 是实现模型上下文协议(MCP)的服务器,旨在为 AI 模型提供一个标准化接口,连接外部数据源和工具,例如文件系统、数据库或 API。

image

MCP 的优势

在 MCP 出现前,AI 调用工具基本通过 Function Call 完成,存在以下问题:

  1. 不同的大模型厂商 Function Call 格式不一致
  2. 大量 API 工具的输入和输出格式不一致,封装管理繁琐

image

MCP 相当于一个统一的 USB-C,不仅统一了不同大模型厂商的 Function Call 格式,也对相关工具的封装进行了统一。

MCP 传输协议

目前 MCP 支持两种主要的传输协议:

  1. Stdio 传输协议

    • 针对本地使用
    • 需要在用户本地安装命令行工具
    • 对运行环境有特定要求
  2. SSE(Server-Sent Events)传输协议

    • 针对云服务部署
    • 基于 HTTP 长连接实现

项目结构

MCP Server

  • Stdio 传输协议(本地)
  • SSE 传输协议(远程)

MCP Client(客户端)

  • 自建客户端(Python)
  • Cursor
  • Cline

环境配置

1. 安装 UV 包

MacOS/Linux:

curl -LsSf https://astral.sh/uv/install.sh | sh

Windows:

powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"

2. 初始化项目

# 创建项目目录
uv init mcp-server
cd mcp-server

# 创建并激活虚拟环境
uv venv
source .venv/bin/activate  # Windows: .venv\Scripts\activate

# 安装依赖
uv add "mcp[cli]" httpx

# 创建服务器实现文件
touch main.py

构建工具函数

image

为了让大模型能访问市面上主流框架的技术文档,我们主要通过用户输入的 query,结合指定 site 特定域名的谷歌搜索进行搜索相关网页,并对相关网页进行解析提取网页文本并返回。

1. 构建相关文档映射字典

docs_urls = {
    "langchain": "python.langchain.com/docs",
    "llama-index": "docs.llamaindex.ai/en/stable",
    "autogen": "microsoft.github.io/autogen/stable",
    "agno": "docs.agno.com",
    "openai-agents-sdk": "openai.github.io/openai-agents-python",
    "mcp-doc": "modelcontextprotocol.io",
    "camel-ai": "docs.camel-ai.org",
    "crew-ai": "docs.crewai.com"
}

2. 构建 MCP 工具

import json
import os
import httpx
from bs4 import BeautifulSoup
from mcp import tool

async def search_web(query: str) -> dict | None:
    payload = json.dumps({"q": query, "num": 3})

    headers = {
        "X-API-KEY": os.getenv("SERPER_API_KEY"),
        "Content-Type": "application/json",
    }

    async with httpx.AsyncClient() as client:
        try:
            response = await client.post(
                SERPER_URL, headers=headers, data=payload, timeout=30.0
            )
            response.raise_for_status()
            return response.json()
        except httpx.TimeoutException:
            return {"organic": []}

async def fetch_url(url: str):
    async with httpx.AsyncClient() as client:
        try:
            response = await client.get(url, timeout=30.0)
            soup = BeautifulSoup(response.text, "html.parser")
            text = soup.get_text()
            return text
        except httpx.TimeoutException:
            return "Timeout error"

@tool()
async def get_docs(query: str, library: str):
    """
    搜索给定查询和库的最新文档。
    支持 langchain、llama-index、autogen、agno、openai-agents-sdk、mcp-doc、camel-ai 和 crew-ai。

    参数:
    query: 要搜索的查询 (例如 "React Agent")
    library: 要搜索的库 (例如 "agno")

    返回:
    文档中的文本
    """
    if library not in docs_urls:
        raise ValueError(f"Library {library} not supported by this tool")

    query = f"site:{docs_urls[library]} {query}"
    results = await search_web(query)
    if len(results["organic"]) == 0:
        return "No results found"

    text = ""
    for result in results["organic"]:
        text += await fetch_url(result["link"])

    return text

封装 MCP Server (基于 Stdio 协议)

1. MCP Server (Stdio)

# main.py
from mcp.server.fastmcp import FastMCP
from dotenv import load_dotenv
import httpx
import json
import os
from bs4 import BeautifulSoup
from typing import Any
import httpx
from mcp.server.fastmcp import FastMCP
from starlette.applications import Starlette
from mcp.server.sse import SseServerTransport
from starlette.requests import Request
from starlette.routing import Mount, Route
from mcp.server import Server
import uvicorn

load_dotenv()

mcp = FastMCP("Agentdocs")

USER_AGENT = "Agentdocs-app/1.0"
SERPER_URL = "https://google.serper.dev/search"

docs_urls = {
    "langchain": "python.langchain.com/docs",
    "llama-index": "docs.llamaindex.ai/en/stable",
    "autogen": "microsoft.github.io/autogen/stable",
    "agno": "docs.agno.com",
    "openai-agents-sdk": "openai.github.io/openai-agents-python",
    "mcp-doc": "modelcontextprotocol.io",
    "camel-ai": "docs.camel-ai.org",
    "crew-ai": "docs.crewai.com"
}

async def search_web(query: str) -> dict | None:
    payload = json.dumps({"q": query, "num": 2})

    headers = {
        "X-API-KEY": os.getenv("SERPER_API_KEY"),
        "Content-Type": "application/json",
    }

    async with httpx.AsyncClient() as client:
        try:
            response = await client.post(
                SERPER_URL, headers=headers, data=payload, timeout=30.0
            )
            response.raise_for_status()
            return response.json()
        except httpx.TimeoutException:
            return {"organic": []}

async def fetch_url(url: str):
    async with httpx.AsyncClient() as client:
        try:
            response = await client.get(url, timeout=30.0)
            soup = BeautifulSoup(response.text, "html.parser")
            text = soup.get_text()
            return text
        except httpx.TimeoutException:
            return "Timeout error"

@mcp.tool()
async def get_docs(query: str, library: str):
    """
    搜索给定查询和库的最新文档。
    支持 langchain、llama-index、autogen、agno、openai-agents-sdk、mcp-doc、camel-ai 和 crew-ai。

    参数:
    query: 要搜索的查询 (例如 "React Agent")
    library: 要搜索的库 (例如 "agno")

    返回:
    文档中的文本
    """
    if library not in docs_urls:
        raise ValueError(f"Library {library} not supported by this tool")

    query = f"site:{docs_urls[library]} {query}"
    results = await search_web(query)
    if len(results["organic"]) == 0:
        return "No results found"

    text = ""
    for result in results["organic"]:
        text += await fetch_url(result["link"])

    return text

if __name__ == "__main__":
    mcp.run(transport="stdio")

启动命令:

uv run main.py

2. 客户端配置

2.1 基于 Cline

首先在 Visual Studio Code 安装 Cline 插件,然后进行配置 MCP

{
  "mcpServers": {
    "mcp-server": {
      "command": "uv",
      "args": [
        "--directory",
        "<你的项目路径>",
        "run",
        "main.py"
      ]
    }
  }
}

成功绑定如图(左侧绿灯): image

2.2 基于 Cursor

项目根目录创建 .cursor 文件夹,并创建 mcp.json 文件,如: image

然后粘贴以下内容到 mcp.json

{
  "mcpServers": {
    "mcp-server": {
      "command": "uv",
      "args": [
        "--directory",
        "<你的项目路径>",
        "run",
        "main.py"
      ]
    }
  }
}

成功配置如图: image

在 Features 开启 MCP 服务 image

通过对话它便通过 MCP 获取相关文档信息进行回答: image

构建 SSE MCP Server (基于 SSE 协议)

1. 封装 MCP Server

from mcp.server.fastmcp import FastMCP
from dotenv import load_dotenv
import httpx
import json
import os
from bs4 import BeautifulSoup
from typing import Any
import httpx
from mcp.server.fastmcp import FastMCP
from starlette.applications import Starlette
from mcp.server.sse import SseServerTransport
from starlette.requests import Request
from starlette.routing import Mount, Route
from mcp.server import Server
import uvicorn

load_dotenv()

mcp = FastMCP("docs")

USER_AGENT = "docs-app/1.0"
SERPER_URL = "https://google.serper.dev/search"

docs_urls = {
    "langchain": "python.langchain.com/docs",
    "llama-index": "docs.llamaindex.ai/en/stable",
    "autogen": "microsoft.github.io/autogen/stable",
    "agno": "docs.agno.com",
    "openai-agents-sdk": "openai.github.io/openai-agents-python",
    "mcp-doc": "modelcontextprotocol.io",
    "camel-ai": "docs.camel-ai.org",
    "crew-ai": "docs.crewai.com"
}

async def search_web(query: str) -> dict | None:
    payload = json.dumps({"q": query, "num": 2})

    headers = {
        "X-API-KEY": os.getenv("SERPER_API_KEY"),
        "Content-Type": "application/json",
    }

    async with httpx.AsyncClient() as client:
        try:
            response = await client.post(
                SERPER_URL, headers=headers, data=payload, timeout=30.0
            )
            response.raise_for_status()
            return response.json()
        except httpx.TimeoutException:
            return {"organic": []}

async def fetch_url(url: str):
    async with httpx.AsyncClient() as client:
        try:
            response = await client.get(url, timeout=30.0)
            soup = BeautifulSoup(response.text, "html.parser")
            text = soup.get_text()
            return text
        except httpx.TimeoutException:
            return "Timeout error"

@mcp.tool()
async def get_docs(query: str, library: str):
    """
    搜索给定查询和库的最新文档。
    支持 langchain、llama-index、autogen、agno、openai-agents-sdk、mcp-doc、camel-ai 和 crew-ai。

    参数:
    query: 要搜索的查询 (例如 "React Agent")
    library: 要搜索的库 (例如 "agno")

    返回:
    文档中的文本
    """
    if library not in docs_urls:
        raise ValueError(f"Library {library} not supported by this tool")

    query = f"site:{docs_urls[library]} {query}"
    results = await search_web(query)
    if len(results["organic"]) == 0:
        return "No results found"

    text = ""
    for result in results["organic"]:
        text += await fetch_url(result["link"])

    return text

## sse传输
def create_starlette_app(mcp_server: Server, *, debug: bool = False) -> Starlette:
    """Create a Starlette application that can serve the provided mcp server with SSE."""
    sse = SseServerTransport("/messages/")

    async def handle_sse(request: Request) -> None:
        async with sse.connect_sse(
                request.scope,
                request.receive,
                request._send,  # noqa: SLF001
        ) as (read_stream, write_stream):
            await mcp_server.run(
                read_stream,
                write_stream,
                mcp_server.create_initialization_options(),
            )

    return Starlette(
        debug=debug,
        routes=[
            Route("/sse", endpoint=handle_sse),
            Mount("/messages/", app=sse.handle_post_message),
        ],
    )

if __name__ == "__main__":
    mcp_server = mcp._mcp_server

    import argparse

    parser = argparse.ArgumentParser(description='Run MCP SSE-based server')
    parser.add_argument('--host', default='0.0.0.0', help='Host to bind to')
    parser.add_argument('--port', type=int, default=8020, help='Port to listen on')
    args = parser.parse_args()

    # Bind SSE request handling to MCP server
    starlette_app = create_starlette_app(mcp_server, debug=True)

    uvicorn.run(starlette_app, host=args.host, port=args.port)

启动命令:

uv run main.py --host 0.0.0.0 --port 8020

以上 MCP server 代码直接在你的云服务器跑即可。

2. 构建 MCP Client

import asyncio
import json
import os
from typing import Optional
from contextlib import AsyncExitStack
import time
from mcp import ClientSession
from mcp.client.sse import sse_client

from openai import AsyncOpenAI
from dotenv import load_dotenv

load_dotenv()  # load environment variables from .env

class MCPClient:
    def __init__(self):
        # Initialize session and client objects
        self.session: Optional[ClientSession] = None
        self.exit_stack = AsyncExitStack()
        self.openai = AsyncOpenAI(api_key=os.getenv("OPENAI_API_KEY"), base_url=os.getenv("OPENAI_BASE_URL"))

    async def connect_to_sse_server(self, server_url: str):
        """Connect to an MCP server running with SSE transport"""
        # Store the context managers so they stay alive
        self._streams_context = sse_client(url=server_url)
        streams = await self._streams_context.__aenter__()

        self._session_context = ClientSession(*streams)
        self.session: ClientSession = await self._session_context.__aenter__()

        # Initialize
        await self.session.initialize()

        # List available tools to verify connection
        print("Initialized SSE client...")
        print("Listing tools...")
        response = await self.session.list_tools()
        tools = response.tools
        print("\nConnected to server with tools:", [tool.name for tool in tools])

    async def cleanup(self):
        """Properly clean up the session and streams"""
        if self._session_context:
            await self._session_context.__aexit__(None, None, None)
        if self._streams_context:
            await self._streams_context.__aexit__(None, None, None)

    async def process_query(self, query: str) -> str:
        """Process a query using OpenAI API and available tools"""
        messages = [
            {
                "role": "user",
                "content": query
            }
        ]

        response = await self.session.list_tools()
        available_tools = [{ 
            "type": "function",
            "function": {
                "name": tool.name,
                "description": tool.description,
                "parameters": tool.inputSchema
            }
        } for tool in response.tools]

        # Initial OpenAI API call
        completion = await self.openai.chat.completions.create(
            model=os.getenv("OPENAI_MODEL"),
            max_tokens=1000,
            messages=messages,
            tools=available_tools
        )

        # Process response and handle tool calls
        tool_results = []
        final_text = []
        
        assistant_message = completion.choices[0].message
        
        if assistant_message.tool_calls:
            for tool_call in assistant_message.tool_calls:
                tool_name = tool_call.function.name
                tool_args = json.loads(tool_call.function.arguments)

                # Execute tool call
                result = await self.session.call_tool(tool_name, tool_args)
                tool_results.append({"call": tool_name, "result": result})
                final_text.append(f"[Calling tool {tool_name} with args {tool_args}]")

                # Continue conversation with tool results
                messages.extend([
                    {
                        "role": "assistant",
                        "content": None,
                        "tool_calls": [tool_call]
                    },
                    {
                        "role": "tool",
                        "tool_call_id": tool_call.id,
                        "content": result.content[0].text
                    }
                ])

                print(f"Tool {tool_name} returned: {result.content[0].text}")
                print("messages", messages)
                # Get next response from OpenAI
                completion = await self.openai.chat.completions.create(
                    model=os.getenv("OPENAI_MODEL"),
                    max_tokens=1000,
                    messages=messages,
                )  
                if isinstance(completion.choices[0].message.content, (dict, list)):
                    final_text.append(str(completion.choices[0].message.content))
                else:
                    final_text.append(completion.choices[0].message.content)
        else: 
            if isinstance(assistant_message.content, (dict, list)):
                final_text.append(str(assistant_message.content))
            else:
                final_text.append(assistant_message.content)

        return "\n".join(final_text)

    async def chat_loop(self):
        """Run an interactive chat loop"""
        print("\nMCP Client Started!")
        print("Type your queries or 'quit' to exit.")
        
        while True:
            try:
                query = input("\nQuery: ").strip()
                
                if query.lower() == 'quit':
                    break
                    
                response = await self.process_query(query)
                print("\n" + response)
                    
            except Exception as e:
                print(f"\nError: {str(e)}")

async def main():
    if len(sys.argv) < 2:
        print("Usage: uv run client.py <URL of SSE MCP server (i.e. http://localhost:8080/sse)>")
        sys.exit(1)

    client = MCPClient()
    try:
        await client.connect_to_sse_server(server_url=sys.argv[1])
        await client.chat_loop()
    finally:
        await client.cleanup()

if __name__ == "__main__":
    import sys
    asyncio.run(main())

启动命令:

uv run client.py http://0.0.0.0:8020/sse

Client 日志: image

Server 日志: image

以上便是 Python 从 0 到 1 搭建 MCP Server 以及 MCP Client 的完整教程。有不对的地方请多多指教。

参考相关资料:

  • https://www.youtube.com/watch?v=Ek8JHgZtmcI
  • https://serper.dev/
  • https://modelcontextprotocol.io/quickstart/server
  • https://modelcontextprotocol.io/quickstart/client
  • https://docs.cursor.com/context/model-context-protocol

Python 从0到1构建MCP Server & Client

中文 | English

简介

MCP Server 是实现模型上下文协议(MCP)的服务器,旨在为 AI 模型提供一个标准化接口,连接外部数据源和工具,例如文件系统、数据库或 API。

image

MCP 的优势

在 MCP 出现前,AI 调用工具基本通过 Function Call 完成,存在以下问题:

  1. 不同的大模型厂商 Function Call 格式不一致
  2. 大量 API 工具的输入和输出格式不一致,封装管理繁琐

image

MCP 相当于一个统一的 USB-C,不仅统一了不同大模型厂商的 Function Call 格式,也对相关工具的封装进行了统一。

MCP 传输协议

目前 MCP 支持两种主要的传输协议:

  1. Stdio 传输协议

    • 针对本地使用
    • 需要在用户本地安装命令行工具
    • 对运行环境有特定要求
  2. SSE(Server-Sent Events)传输协议

    • 针对云服务部署
    • 基于 HTTP 长连接实现

项目结构

MCP Server

  • Stdio 传输协议(本地)
  • SSE 传输协议(远程)

MCP Client(客户端)

  • 自建客户端(Python)
  • Cursor
  • Cline

环境配置

1. 安装 UV 包

MacOS/Linux:

curl -LsSf https://astral.sh/uv/install.sh | sh

Windows:

powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"

2. 初始化项目

# 创建项目目录
uv init mcp-server
cd mcp-server

# 创建并激活虚拟环境
uv venv
source .venv/bin/activate  # Windows: .venv\Scripts\activate

# 安装依赖
uv add "mcp[cli]" httpx

# 创建服务器实现文件
touch main.py

构建工具函数

image

为了让大模型能访问市面上主流框架的技术文档,我们主要通过用户输入的 query,结合指定 site 特定域名的谷歌搜索进行搜索相关网页,并对相关网页进行解析提取网页文本并返回。

1. 构建相关文档映射字典

docs_urls = {
    "langchain": "python.langchain.com/docs",
    "llama-index": "docs.llamaindex.ai/en/stable",
    "autogen": "microsoft.github.io/autogen/stable",
    "agno": "docs.agno.com",
    "openai-agents-sdk": "openai.github.io/openai-agents-python",
    "mcp-doc": "modelcontextprotocol.io",
    "camel-ai": "docs.camel-ai.org",
    "crew-ai": "docs.crewai.com"
}

2. 构建 MCP 工具

import json
import os
import httpx
from bs4 import BeautifulSoup
from mcp import tool

async def search_web(query: str) -> dict | None:
    payload = json.dumps({"q": query, "num": 3})

    headers = {
        "X-API-KEY": os.getenv("SERPER_API_KEY"),
        "Content-Type": "application/json",
    }

    async with httpx.AsyncClient() as client:
        try:
            response = await client.post(
                SERPER_URL, headers=headers, data=payload, timeout=30.0
            )
            response.raise_for_status()
            return response.json()
        except httpx.TimeoutException:
            return {"organic": []}

async def fetch_url(url: str):
    async with httpx.AsyncClient() as client:
        try:
            response = await client.get(url, timeout=30.0)
            soup = BeautifulSoup(response.text, "html.parser")
            text = soup.get_text()
            return text
        except httpx.TimeoutException:
            return "Timeout error"

@tool()
async def get_docs(query: str, library: str):
    """
    搜索给定查询和库的最新文档。
    支持 langchain、llama-index、autogen、agno、openai-agents-sdk、mcp-doc、camel-ai 和 crew-ai。

    参数:
    query: 要搜索的查询 (例如 "React Agent")
    library: 要搜索的库 (例如 "agno")

    返回:
    文档中的文本
    """
    if library not in docs_urls:
        raise ValueError(f"Library {library} not supported by this tool")

    query = f"site:{docs_urls[library]} {query}"
    results = await search_web(query)
    if len(results["organic"]) == 0:
        return "No results found"

    text = ""
    for result in results["organic"]:
        text += await fetch_url(result["link"])

    return text

封装 MCP Server (基于 Stdio 协议)

1. MCP Server (Stdio)

# main.py
from mcp.server.fastmcp import FastMCP
from dotenv import load_dotenv
import httpx
import json
import os
from bs4 import BeautifulSoup
from typing import Any
import httpx
from mcp.server.fastmcp import FastMCP
from starlette.applications import Starlette
from mcp.server.sse import SseServerTransport
from starlette.requests import Request
from starlette.routing import Mount, Route
from mcp.server import Server
import uvicorn

load_dotenv()

mcp = FastMCP("Agentdocs")

USER_AGENT = "Agentdocs-app/1.0"
SERPER_URL = "https://google.serper.dev/search"

docs_urls = {
    "langchain": "python.langchain.com/docs",
    "llama-index": "docs.llamaindex.ai/en/stable",
    "autogen": "microsoft.github.io/autogen/stable",
    "agno": "docs.agno.com",
    "openai-agents-sdk": "openai.github.io/openai-agents-python",
    "mcp-doc": "modelcontextprotocol.io",
    "camel-ai": "docs.camel-ai.org",
    "crew-ai": "docs.crewai.com"
}

async def search_web(query: str) -> dict | None:
    payload = json.dumps({"q": query, "num": 2})

    headers = {
        "X-API-KEY": os.getenv("SERPER_API_KEY"),
        "Content-Type": "application/json",
    }

    async with httpx.AsyncClient() as client:
        try:
            response = await client.post(
                SERPER_URL, headers=headers, data=payload, timeout=30.0
            )
            response.raise_for_status()
            return response.json()
        except httpx.TimeoutException:
            return {"organic": []}

async def fetch_url(url: str):
    async with httpx.AsyncClient() as client:
        try:
            response = await client.get(url, timeout=30.0)
            soup = BeautifulSoup(response.text, "html.parser")
            text = soup.get_text()
            return text
        except httpx.TimeoutException:
            return "Timeout error"

@mcp.tool()
async def get_docs(query: str, library: str):
    """
    搜索给定查询和库的最新文档。
    支持 langchain、llama-index、autogen、agno、openai-agents-sdk、mcp-doc、camel-ai 和 crew-ai。

    参数:
    query: 要搜索的查询 (例如 "React Agent")
    library: 要搜索的库 (例如 "agno")

    返回:
    文档中的文本
    """
    if library not in docs_urls:
        raise ValueError(f"Library {library} not supported by this tool")

    query = f"site:{docs_urls[library]} {query}"
    results = await search_web(query)
    if len(results["organic"]) == 0:
        return "No results found"

    text = ""
    for result in results["organic"]:
        text += await fetch_url(result["link"])

    return text

if __name__ == "__main__":
    mcp.run(transport="stdio")

启动命令:

uv run main.py

2. 客户端配置

2.1 基于 Cline

首先在 Visual Studio Code 安装 Cline 插件,然后进行配置 MCP

{
  "mcpServers": {
    "mcp-server": {
      "command": "uv",
      "args": [
        "--directory",
        "<你的项目路径>",
        "run",
        "main.py"
      ]
    }
  }
}

成功绑定如图(左侧绿灯): image

2.2 基于 Cursor

项目根目录创建 .cursor 文件夹,并创建 mcp.json 文件,如: image

然后粘贴以下内容到 mcp.json

{
  "mcpServers": {
    "mcp-server": {
      "command": "uv",
      "args": [
        "--directory",
        "<你的项目路径>",
        "run",
        "main.py"
      ]
    }
  }
}

成功配置如图: image

在 Features 开启 MCP 服务 image

通过对话它便通过 MCP 获取相关文档信息进行回答: image

构建 SSE MCP Server (基于 SSE 协议)

1. 封装 MCP Server

from mcp.server.fastmcp import FastMCP
from dotenv import load_dotenv
import httpx
import json
import os
from bs4 import BeautifulSoup
from typing import

推荐服务器

Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
mcp-server-qdrant

mcp-server-qdrant

这个仓库展示了如何为向量搜索引擎 Qdrant 创建一个 MCP (Managed Control Plane) 服务器的示例。

官方
精选
AIO-MCP Server

AIO-MCP Server

🚀 集成了 AI 搜索、RAG 和多服务(GitLab/Jira/Confluence/YouTube)的一体化 MCP 服务器,旨在增强 AI 驱动的开发工作流程。来自 Folk。

精选
本地
https://github.com/Streen9/react-mcp

https://github.com/Streen9/react-mcp

react-mcp 与 Claude Desktop 集成,能够根据用户提示创建和修改 React 应用程序。

精选
本地
MCP Atlassian

MCP Atlassian

适用于 Atlassian Cloud 产品(Confluence 和 Jira)的 Model Context Protocol (MCP) 服务器。此集成专为 Atlassian Cloud 实例设计,不支持 Atlassian Server 或 Data Center 部署。

精选
any-chat-completions-mcp

any-chat-completions-mcp

将 Claude 与任何 OpenAI SDK 兼容的聊天完成 API 集成 - OpenAI、Perplexity、Groq、xAI、PyroPrompts 等。

精选
Exa MCP Server

Exa MCP Server

一个模型上下文协议服务器,它使像 Claude 这样的人工智能助手能够以安全和受控的方式,使用 Exa AI 搜索 API 执行实时网络搜索。

精选
MySQL MCP Server

MySQL MCP Server

允许人工智能助手通过受控界面列出表格、读取数据和执行 SQL 查询,从而使数据库探索和分析更安全、更有条理。

精选