mcp_server

mcp_server

Okay, I understand. You want me to describe how to implement a "weather MCP server" that can be called by a client IDE like Cursor. Here's a breakdown of the concept, implementation considerations, and a simplified example (using Python and a basic HTTP API) to illustrate the core ideas. **What is an MCP Server (in this context)?** In this scenario, "MCP" likely refers to a *Microservice Communication Protocol* or a similar concept. It means you're building a small, independent service (the weather server) that provides weather information and communicates with other applications (like the Cursor IDE) using a defined protocol. In practice, this often translates to a RESTful API over HTTP. **Key Components** 1. **Weather Data Source:** * This is where your server gets the actual weather information. You'll likely use a third-party weather API (e.g., OpenWeatherMap, AccuWeather, WeatherAPI.com). These APIs typically require you to sign up for an account and obtain an API key. * Consider caching the weather data to reduce the number of API calls and improve response times. 2. **Server-Side Implementation (e.g., Python with Flask/FastAPI):** * This is the core of your weather server. It handles incoming requests, fetches weather data from the data source, and formats the response. * **Framework Choice:** * **Flask:** A lightweight and flexible framework, good for simple APIs. * **FastAPI:** A modern, high-performance framework with automatic data validation and API documentation (using OpenAPI/Swagger). Generally preferred for new projects. * **API Endpoints:** You'll define endpoints like: * `/weather?city={city_name}`: Returns weather information for a specific city. * `/weather?zip={zip_code}`: Returns weather information for a specific zip code. * `/forecast?city={city_name}`: Returns a weather forecast for a specific city. 3. **Client-Side Integration (in Cursor IDE):** * The Cursor IDE (or any other client) will need to make HTTP requests to your weather server's API endpoints. * This might involve writing code within Cursor (e.g., using JavaScript or Python within a Cursor extension) to: * Get user input (e.g., the city name). * Construct the API request URL. * Send the request to the weather server. * Parse the JSON response from the server. * Display the weather information in the Cursor IDE. **Implementation Steps (Simplified Example with Python and Flask)** **1. Set up your environment:** ```bash # Create a project directory mkdir weather_server cd weather_server # Create a virtual environment (recommended) python3 -m venv venv source venv/bin/activate # On Linux/macOS # venv\Scripts\activate # On Windows # Install Flask and requests (for making HTTP requests to the weather API) pip install Flask requests ``` **2. `weather_server.py` (Flask Server):** ```python from flask import Flask, request, jsonify import requests import os app = Flask(__name__) # Replace with your actual OpenWeatherMap API key API_KEY = os.environ.get("OPENWEATHERMAP_API_KEY") or "YOUR_OPENWEATHERMAP_API_KEY" # Get from environment variable or hardcode (not recommended for production) BASE_URL = "https://api.openweathermap.org/data/2.5/weather" def get_weather_data(city): """Fetches weather data from OpenWeatherMap.""" params = { "q": city, "appid": API_KEY, "units": "metric", # Use Celsius } try: response = requests.get(BASE_URL, params=params) response.raise_for_status() # Raise HTTPError for bad responses (4xx or 5xx) data = response.json() return data except requests.exceptions.RequestException as e: print(f"Error fetching weather data: {e}") return None @app.route("/weather") def weather(): """API endpoint to get weather by city.""" city = request.args.get("city") if not city: return jsonify({"error": "City parameter is required"}), 400 weather_data = get_weather_data(city) if weather_data: # Extract relevant information temperature = weather_data["main"]["temp"] description = weather_data["weather"][0]["description"] humidity = weather_data["main"]["humidity"] wind_speed = weather_data["wind"]["speed"] return jsonify({ "city": city, "temperature": temperature, "description": description, "humidity": humidity, "wind_speed": wind_speed }) else: return jsonify({"error": "Could not retrieve weather data for that city"}), 500 if __name__ == "__main__": app.run(debug=True) # Don't use debug=True in production! ``` **3. Running the Server:** ```bash # Set your OpenWeatherMap API key (replace with your actual key) export OPENWEATHERMAP_API_KEY="YOUR_OPENWEATHERMAP_API_KEY" # Linux/macOS # set OPENWEATHERMAP_API_KEY="YOUR_OPENWEATHERMAP_API_KEY" # Windows # Run the Flask server python weather_server.py ``` **4. Example Client-Side Code (Conceptual - in Cursor IDE):** This is a *very* simplified example of how you *might* integrate this into Cursor. The exact implementation will depend on Cursor's extension API and how you want to display the information. This assumes you can execute JavaScript or Python code within Cursor. ```javascript // Example JavaScript code (Conceptual - adapt to Cursor's API) async function getWeather(city) { const apiUrl = `http://127.0.0.1:5000/weather?city=${city}`; // Replace with your server's address try { const response = await fetch(apiUrl); const data = await response.json(); if (response.ok) { // Display the weather information in the Cursor IDE console.log(`Weather in ${data.city}:`); console.log(`Temperature: ${data.temperature}°C`); console.log(`Description: ${data.description}`); console.log(`Humidity: ${data.humidity}%`); console.log(`Wind Speed: ${data.wind_speed} m/s`); // You'd need to use Cursor's API to actually display this in the editor or a panel. // For example, Cursor might have a function like: // cursor.showInformationMessage(`Weather in ${data.city}: ...`); } else { console.error(`Error: ${data.error}`); // Display an error message in Cursor } } catch (error) { console.error("Error fetching weather:", error); // Display a network error in Cursor } } // Example usage: const cityName = "London"; // Or get the city from user input in Cursor getWeather(cityName); ``` **Explanation and Improvements** * **Error Handling:** The code includes basic error handling (checking for API errors, missing city parameter). Robust error handling is crucial for production. * **API Key Security:** *Never* hardcode your API key directly in the code, especially if you're sharing it. Use environment variables (as shown) or a configuration file. * **Asynchronous Operations:** Use `async/await` (as in the JavaScript example) to avoid blocking the UI thread while waiting for the API response. * **Data Validation:** Use a library like `marshmallow` (in Python) or a similar validation library in your chosen language to validate the data received from the weather API. This helps prevent unexpected errors. * **Caching:** Implement caching to store frequently accessed weather data. This reduces the load on the weather API and improves response times. You could use a simple in-memory cache (for small-scale deployments) or a more robust caching solution like Redis or Memcached. * **Rate Limiting:** Be aware of the rate limits imposed by the weather API you're using. Implement rate limiting in your server to avoid exceeding the limits and getting your API key blocked. * **Logging:** Use a logging library (e.g., `logging` in Python) to log important events, errors, and debugging information. * **API Documentation:** Use a tool like Swagger (with FastAPI) to automatically generate API documentation. This makes it easier for other developers to use your weather server. * **Deployment:** Consider deploying your weather server to a cloud platform like AWS, Google Cloud, or Azure. **Chinese Translation of Key Concepts** * **Weather MCP Server:** 天气 MCP 服务器 (Tiānqì MCP fúwùqì) * **Microservice Communication Protocol:** 微服务通信协议 (Wēi fúwù tōngxìn xiéyì) * **API Endpoint:** API 端点 (API duāndiǎn) * **RESTful API:** RESTful API (RESTful API) (The term is often used directly in Chinese as well) * **API Key:** API 密钥 (API mìyào) * **Data Source:** 数据源 (shùjù yuán) * **Caching:** 缓存 (huǎncún) * **Rate Limiting:** 速率限制 (sùlǜ xiànzhì) * **Error Handling:** 错误处理 (cuòwù chǔlǐ) * **Environment Variable:** 环境变量 (huánjìng biànliàng) **Important Considerations for Cursor Integration** * **Cursor's Extension API:** The most important thing is to understand Cursor's extension API. How can you create extensions, access the editor, display information, and get user input? Refer to Cursor's official documentation for this. * **Security:** Be very careful about security when integrating with an IDE. Avoid storing sensitive information (like API keys) directly in the extension code. Use secure storage mechanisms provided by the IDE or the operating system. * **User Experience:** Design the integration to be as seamless and intuitive as possible for the user. Consider how the weather information will be displayed (e.g., in a tooltip, a panel, or directly in the editor). This detailed explanation and example should give you a solid foundation for building your weather MCP server and integrating it with Cursor. Remember to adapt the code and concepts to your specific needs and the capabilities of the Cursor IDE. Good luck!

njk8

研究与数据
访问服务器

README

mcp_server

一个天气 mcp 服务器的实现,可以被像 Cursor 这样的客户端 IDE 调用。

推荐服务器

Crypto Price & Market Analysis MCP Server

Crypto Price & Market Analysis MCP Server

一个模型上下文协议 (MCP) 服务器,它使用 CoinCap API 提供全面的加密货币分析。该服务器通过一个易于使用的界面提供实时价格数据、市场分析和历史趋势。 (Alternative, slightly more formal and technical translation): 一个模型上下文协议 (MCP) 服务器,利用 CoinCap API 提供全面的加密货币分析服务。该服务器通过用户友好的界面,提供实时价格数据、市场分析以及历史趋势数据。

精选
TypeScript
MCP PubMed Search

MCP PubMed Search

用于搜索 PubMed 的服务器(PubMed 是一个免费的在线数据库,用户可以在其中搜索生物医学和生命科学文献)。 我是在 MCP 发布当天创建的,但当时正在度假。 我看到有人在您的数据库中发布了类似的服务器,但还是决定发布我的服务器。

精选
Python
mixpanel

mixpanel

连接到您的 Mixpanel 数据。 从 Mixpanel 分析查询事件、留存和漏斗数据。

精选
TypeScript
Sequential Thinking MCP Server

Sequential Thinking MCP Server

这个服务器通过将复杂问题分解为顺序步骤来促进结构化的问题解决,支持修订,并通过完整的 MCP 集成来实现多条解决方案路径。

精选
Python
Nefino MCP Server

Nefino MCP Server

为大型语言模型提供访问德国可再生能源项目新闻和信息的能力,允许按地点、主题(太阳能、风能、氢能)和日期范围进行筛选。

官方
Python
Vectorize

Vectorize

将 MCP 服务器向量化以实现高级检索、私有深度研究、Anything-to-Markdown 文件提取和文本分块。

官方
JavaScript
Mathematica Documentation MCP server

Mathematica Documentation MCP server

一个服务器,通过 FastMCP 提供对 Mathematica 文档的访问,使用户能够从 Wolfram Mathematica 检索函数文档和列出软件包符号。

本地
Python
kb-mcp-server

kb-mcp-server

一个 MCP 服务器,旨在实现便携性、本地化、简易性和便利性,以支持对 txtai “all in one” 嵌入数据库进行基于语义/图的检索。任何 tar.gz 格式的 txtai 嵌入数据库都可以被加载。

本地
Python
Research MCP Server

Research MCP Server

这个服务器用作 MCP 服务器,与 Notion 交互以检索和创建调查数据,并与 Claude Desktop Client 集成以进行和审查调查。

本地
Python
Cryo MCP Server

Cryo MCP Server

一个API服务器,实现了模型补全协议(MCP),用于Cryo区块链数据提取,允许用户通过任何兼容MCP的客户端查询以太坊区块链数据。

本地
Python