Python LINE Server
python mcp LINE. Contribute to amornpan/py-mcp-line development by creating an account on GitHub.
README
Python LINE MCP Server
A Model Context Protocol server implementation in Python that provides access to LINE Bot messages. This server enables Language Models to read and analyze LINE conversations through a standardized interface.
Features
Core Functionality
- Asynchronous operation using Python's
asyncio
- Environment-based configuration using
python-dotenv
- Comprehensive logging system
- LINE Bot webhook event handling
- Message storage in JSON format
- FastAPI integration for API endpoints
- Pydantic models for data validation
- Support for text, sticker, and image messages
Prerequisites
- Python 3.8+
- Required Python packages:
- fastapi
- pydantic
- python-dotenv
- mcp-server
- line-bot-sdk
- uvicorn
Installation
git clone https://github.com/amornpan/py-mcp-line.git
cd py-mcp-line
pip install -r requirements.txt
Project Structure
PY-MCP-LINE/
├── src/
│ └── line/
│ ├── __init__.py
│ └── server.py
├── data/
│ └── messages.json
├── tests/
│ ├── __init__.py
│ └── test_line.py
├── .env
├── .env.example
├── .gitignore
├── README.md
├── Dockerfile
└── requirements.txt
Directory Structure Explanation
src/line/
- Main source code directory__init__.py
- Package initializationserver.py
- Main server implementation
data/
- Data storage directorymessages.json
- Stored LINE messages
tests/
- Test files directory__init__.py
- Test package initializationtest_line.py
- LINE functionality tests
.env
- Environment configuration file (not in git).env.example
- Example environment configuration.gitignore
- Git ignore rulesREADME.md
- Project documentationDockerfile
- Docker configurationrequirements.txt
- Project dependencies
Configuration
Create a .env
file in the project root:
LINE_CHANNEL_SECRET=your_channel_secret
LINE_ACCESS_TOKEN=your_access_token
SERVER_PORT=8000
MESSAGES_FILE=data/messages.json
API Implementation Details
Resource Listing
@app.list_resources()
async def list_resources() -> list[Resource]
- Lists available message types from the LINE Bot
- Returns resources with URIs in the format
line://<message_type>/data
- Includes resource descriptions and MIME types
Resource Reading
@app.read_resource()
async def read_resource(uri: AnyUrl) -> str
- Reads messages of the specified type
- Accepts URIs in the format
line://<message_type>/data
- Returns messages in JSON format
- Supports filtering by date, user, or content
Usage with Claude Desktop
Add to your Claude Desktop configuration:
On MacOS: ~/Library/Application Support/Claude/claude_desktop_config.json
On Windows: %APPDATA%/Claude/claude_desktop_config.json
{
"mcpServers": {
"line": {
"command": "python",
"args": [
"server.py"
],
"env": {
"LINE_CHANNEL_SECRET": "your_channel_secret",
"LINE_ACCESS_TOKEN": "your_access_token",
"SERVER_PORT": "8000",
"MESSAGES_FILE": "data/messages.json"
}
}
}
}
Error Handling
The server implements comprehensive error handling for:
- Webhook validation failures
- Message storage errors
- Resource access errors
- URI validation
- LINE API response errors
All errors are logged and returned with appropriate error messages.
Security Features
- Environment variable based configuration
- LINE message signature validation
- Proper error handling
- Input validation through Pydantic
Contact Information
Amornpan Phornchaicharoen
Feel free to reach out to me if you have any questions about this project or would like to collaborate!
Made with ❤️ by Amornpan Phornchaicharoen
Author
Amornpan Phornchaicharoen
Requirements
Create a requirements.txt
file with:
fastapi>=0.104.1
pydantic>=2.10.6
uvicorn>=0.34.0
python-dotenv>=1.0.1
line-bot-sdk>=3.5.0
anyio>=4.5.0
mcp==1.2.0
These versions have been tested and verified to work together. The key components are:
fastapi
anduvicorn
for the API serverpydantic
for data validationline-bot-sdk
for LINE Bot integrationmcp
for Model Context Protocol implementationpython-dotenv
for environment configurationanyio
for asynchronous I/O support
Acknowledgments
- LINE Developers for the LINE Messaging API
- Model Context Protocol community
- Python FastAPI community
- Contributors to the python-dotenv project
推荐服务器
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
mcp-server-qdrant
这个仓库展示了如何为向量搜索引擎 Qdrant 创建一个 MCP (Managed Control Plane) 服务器的示例。
AIO-MCP Server
🚀 集成了 AI 搜索、RAG 和多服务(GitLab/Jira/Confluence/YouTube)的一体化 MCP 服务器,旨在增强 AI 驱动的开发工作流程。来自 Folk。
https://github.com/Streen9/react-mcp
react-mcp 与 Claude Desktop 集成,能够根据用户提示创建和修改 React 应用程序。
MCP Atlassian
适用于 Atlassian Cloud 产品(Confluence 和 Jira)的 Model Context Protocol (MCP) 服务器。此集成专为 Atlassian Cloud 实例设计,不支持 Atlassian Server 或 Data Center 部署。

any-chat-completions-mcp
将 Claude 与任何 OpenAI SDK 兼容的聊天完成 API 集成 - OpenAI、Perplexity、Groq、xAI、PyroPrompts 等。
MySQL MCP Server
允许人工智能助手通过受控界面列出表格、读取数据和执行 SQL 查询,从而使数据库探索和分析更安全、更有条理。
browser-use MCP server
一个由人工智能驱动的浏览器自动化服务器,它实现了模型上下文协议,从而能够使用自然语言控制网页浏览器,以执行诸如导航、表单填写和视觉交互等任务。
mcp-codex-keeper
作为开发知识的守护者,为 AI 助手提供精心策划的最新文档和最佳实践访问权限。