RAT MCP Server (Retrieval Augmented Thinking)
🧠 MCP server implementing RAT (Retrieval Augmented Thinking) - combines DeepSeek's reasoning with GPT-4/Claude/Mistral responses, maintaining conversation context between interactions.
newideas99
README
Deepseek-Thinking-Claude-3.5-Sonnet-CLINE-MCP
A Model Context Protocol (MCP) server that combines DeepSeek R1's reasoning capabilities with Claude 3.5 Sonnet's response generation through OpenRouter. This implementation uses a two-stage process where DeepSeek provides structured reasoning which is then incorporated into Claude's response generation.
Features
-
Two-Stage Processing:
- Uses DeepSeek R1 for initial reasoning (50k character context)
- Uses Claude 3.5 Sonnet for final response (600k character context)
- Both models accessed through OpenRouter's unified API
- Injects DeepSeek's reasoning tokens into Claude's context
-
Smart Conversation Management:
- Detects active conversations using file modification times
- Handles multiple concurrent conversations
- Filters out ended conversations automatically
- Supports context clearing when needed
-
Optimized Parameters:
- Model-specific context limits:
- DeepSeek: 50,000 characters for focused reasoning
- Claude: 600,000 characters for comprehensive responses
- Recommended settings:
- temperature: 0.7 for balanced creativity
- top_p: 1.0 for full probability distribution
- repetition_penalty: 1.0 to prevent repetition
- Model-specific context limits:
Installation
Installing via Smithery
To install DeepSeek Thinking with Claude 3.5 Sonnet for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @newideas99/Deepseek-Thinking-Claude-3.5-Sonnet-CLINE-MCP --client claude
Manual Installation
- Clone the repository:
git clone https://github.com/yourusername/Deepseek-Thinking-Claude-3.5-Sonnet-CLINE-MCP.git
cd Deepseek-Thinking-Claude-3.5-Sonnet-CLINE-MCP
- Install dependencies:
npm install
- Create a
.env
file with your OpenRouter API key:
# Required: OpenRouter API key for both DeepSeek and Claude models
OPENROUTER_API_KEY=your_openrouter_api_key_here
# Optional: Model configuration (defaults shown below)
DEEPSEEK_MODEL=deepseek/deepseek-r1 # DeepSeek model for reasoning
CLAUDE_MODEL=anthropic/claude-3.5-sonnet:beta # Claude model for responses
- Build the server:
npm run build
Usage with Cline
Add to your Cline MCP settings (usually in ~/.vscode/globalStorage/saoudrizwan.claude-dev/settings/cline_mcp_settings.json
):
{
"mcpServers": {
"deepseek-claude": {
"command": "/path/to/node",
"args": ["/path/to/Deepseek-Thinking-Claude-3.5-Sonnet-CLINE-MCP/build/index.js"],
"env": {
"OPENROUTER_API_KEY": "your_key_here"
},
"disabled": false,
"autoApprove": []
}
}
}
Tool Usage
The server provides two tools for generating and monitoring responses:
generate_response
Main tool for generating responses with the following parameters:
{
"prompt": string, // Required: The question or prompt
"showReasoning"?: boolean, // Optional: Show DeepSeek's reasoning process
"clearContext"?: boolean, // Optional: Clear conversation history
"includeHistory"?: boolean // Optional: Include Cline conversation history
}
check_response_status
Tool for checking the status of a response generation task:
{
"taskId": string // Required: The task ID from generate_response
}
Response Polling
The server uses a polling mechanism to handle long-running requests:
-
Initial Request:
generate_response
returns immediately with a task ID- Response format:
{"taskId": "uuid-here"}
-
Status Checking:
- Use
check_response_status
to poll the task status - Note: Responses can take up to 60 seconds to complete
- Status progresses through: pending → reasoning → responding → complete
- Use
Example usage in Cline:
// Initial request
const result = await use_mcp_tool({
server_name: "deepseek-claude",
tool_name: "generate_response",
arguments: {
prompt: "What is quantum computing?",
showReasoning: true
}
});
// Get taskId from result
const taskId = JSON.parse(result.content[0].text).taskId;
// Poll for status (may need multiple checks over ~60 seconds)
const status = await use_mcp_tool({
server_name: "deepseek-claude",
tool_name: "check_response_status",
arguments: { taskId }
});
// Example status response when complete:
{
"status": "complete",
"reasoning": "...", // If showReasoning was true
"response": "..." // The final response
}
Development
For development with auto-rebuild:
npm run watch
How It Works
-
Reasoning Stage (DeepSeek R1):
- Uses OpenRouter's reasoning tokens feature
- Prompt is modified to output 'done' while capturing reasoning
- Reasoning is extracted from response metadata
-
Response Stage (Claude 3.5 Sonnet):
- Receives the original prompt and DeepSeek's reasoning
- Generates final response incorporating the reasoning
- Maintains conversation context and history
License
MIT License - See LICENSE file for details.
Credits
Based on the RAT (Retrieval Augmented Thinking) concept by Skirano, which enhances AI responses through structured reasoning and knowledge retrieval.
This implementation specifically combines DeepSeek R1's reasoning capabilities with Claude 3.5 Sonnet's response generation through OpenRouter's unified API.
推荐服务器

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
MCP server for interacting with Neon Management API and databases
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。
mcp-server-qdrant
这个仓库展示了如何为向量搜索引擎 Qdrant 创建一个 MCP (Managed Control Plane) 服务器的示例。
AIO-MCP Server
🚀 All-in-one MCP server with AI search, RAG, and multi-service integrations (GitLab/Jira/Confluence/YouTube) for AI-enhanced development workflows. Folk from
Knowledge Graph Memory Server
为 Claude 实现持久性记忆,使用本地知识图谱,允许 AI 记住用户的信息,并可在自定义位置存储,跨对话保持记忆。
Hyperbrowser
欢迎来到 Hyperbrowser,人工智能的互联网。Hyperbrowser 是下一代平台,旨在增强人工智能代理的能力,并实现轻松、可扩展的浏览器自动化。它专为人工智能开发者打造,消除了本地基础设施和性能瓶颈带来的麻烦,让您能够:
https://github.com/Streen9/react-mcp
react-mcp 与 Claude Desktop 集成,能够根据用户提示创建和修改 React 应用程序。

any-chat-completions-mcp
将 Claude 与任何 OpenAI SDK 兼容的聊天完成 API 集成 - OpenAI、Perplexity、Groq、xAI、PyroPrompts 等。
Exa MCP Server
一个模型上下文协议服务器,它使像 Claude 这样的人工智能助手能够以安全和受控的方式,使用 Exa AI 搜索 API 执行实时网络搜索。